Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application and Prospect of Machine Learning in Photoelectron Spectroscopy

Deng Xiang-Wen Wu Li-Yuan Zhao Rui Wang Jia-Ou Zhao Li-Na

Citation:

Application and Prospect of Machine Learning in Photoelectron Spectroscopy

Deng Xiang-Wen, Wu Li-Yuan, Zhao Rui, Wang Jia-Ou, Zhao Li-Na
PDF
Get Citation
  • Photoelectron spectroscopy serves as a prevalent characterization technique within the realm of material science. Specifically, angle-resolved photoelectron spectroscopy (ARPES) provides a direct method for determining the energy-momentum dispersion relationship and Fermi surface structure of electrons within a material system. This makes ARPES a potent tool for the investigation of many-body interactions and correlated quantum materials. The field of photoelectron spectroscopy has seen continuous advancements, with the emergence of technologies such as time-resolved ARPES and nano-ARPES. Concurrently, the evolution of synchrotron radiation devices has led to the generation of an increasing volume of high throughput and high dimension experimental data. This underscores the growing urgency for the development of more efficient and precise data processing methods, as well as the extraction of deeper physical information. In light of these developments, machine learning is poised to play an increasingly significant role across various fields, including but not limited to ARPES. This paper reviews the application of machine learning in photoelectron spectroscopy, which primarily encompasses three aspects:
    1.Data Denoising: Machine learning can be utilized for denoising photoelectron spectroscopy data. The denoising process via machine learning algorithms can be bifurcated into two methods. Both of the two methods do not need for manual data annotation. The first approach involves the use of noise generation algorithms to simulate experimental noise, thereby obtaining effective low signal-to-noise ratio to high signal-to-noise ratio data pairs. Alternatively, the second approach can be employed to extract noise and clean spectral data, respectively.
    2.Electronic Structure and Chemical Composition Analysis: Machine learning can be applied for the analysis of electronic structure and chemical composition. (Angle-resolved) photoelectron spectroscopy contains abundant information about material structure. Information such as energy band structure, self-energy, binding energy, and other condensed matter data can be rapidly acquired through machine learning schemes.
    3.Prediction of Photoelectron Spectroscopy: the electronic structure information obtained by combining first-principles calculation can also predict the photoelectron spectroscopy. The rapid acquisition of photoelectron spectroscopy data through machine learning algorithms also holds significance for material design. Photoelectron spectroscopy holds significant importance in the study of condensed matter physics. In the context of synchrotron radiation development, the construction of an automated data acquisition and analysis system could play a pivotal role in condensed matter physics research. In addition, adding more physical constraints to the machine learning model will improve the interpretability and accuracy of the model. There exists a close relationship between photoelectron spectroscopy and first-principles calculations with respect to electronic structure properties. The integration of these two through machine learning is anticipated to significantly contribute to the study of electronic structure properties. Furthermore, as machine learning algorithms continue to evolve, the application of more advanced machine learning algorithms in photoelectron spectroscopy research is expected. By building automated data acquisition and analysis systems, designing comprehensive workflows based on machine learning and first-principles methods, and integrating new machine learning techniques, it will help accelerate the progress of photoelectron spectroscopy experiments and facilitate the analysis of electronic structure properties and microscopic physical mechanisms, which will advance the frontier research in quantum materials and condensed matter physics.
  • [1]

    Hoesch M, Greber T, Petrov V, Muntwiler M, Hengsberger M, Auwärter W, Osterwalder J 2002 J. Electron Spectrosc. Relat. Phenom. 124 263

    [2]

    Dil J H 2009 J. Phys.: Condes. Matter 21 403001

    [3]

    Yaji K, Harasawa A, Kuroda K, Toyohisa S, Nakayama M, Ishida Y, Fukushima A, Watanabe S, Chen C, Komori F, Shin S 2016 Rev. Sci. Instrum. 87 053111

    [4]

    Nordling C, Sokolowski E, Siegbahn K 1957 Phys. Rev. 105 1676

    [5]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [6]

    Hashimoto M, He R H, Tanaka K, Testaud J P, Meevasana W, Moore R G, Lu D, Yao H, Yoshida Y, Eisaki H, Devereaux T P, Hussain Z, Shen Z X 2010 Nat. Phys. 6 414

    [7]

    Vishik I M, Hashimoto M, He R H, Lee W S, Schmitt F, Lu D, Moore R G, Zhang C, Meevasana W, Sasagawa T, Uchida S, Fujita K, Ishida S, Ishikado M, Yoshida Y, Eisaki H, Hussain Z, Devereaux T P, Shen Z X 2012 Proc. Natl. Acad. Sci. 109 18332

    [8]

    Ideta S, Johnston S, Yoshida T, Tanaka K, Mori M, Anzai H, Ino A, Arita M, Namatame H, Taniguchi M, Ishida S, Takashima K, Kojima K, Devereaux T, Uchida S, Fujimori A 2021 Phys. Rev. Lett. 127 217004

    [9]

    Gauvin-Ndiaye C, Setrakian M, Tremblay A M 2022 Phys. Rev. Lett. 128 087001

    [10]

    Maletz J, Zabolotnyy V B, Evtushinsky D V, Thirupathaiah S, Wolter A U B, Harnagea L, Yaresko A N, Vasiliev A N, Chareev D A, Böhmer A E, Hardy F, Wolf T, Meingast C, Rienks E D L, Büchner B, Borisenko S V 2014 Phys. Rev. B 89 220506

    [11]

    Yi M, Zhang Y, Shen Z X, Lu D 2017 npj Quantum Mater. 2 57

    [12]

    Cattelan M, Fox N A 2018 Nanomaterials 8 284

    [13]

    Sugawara K, Kusaka H, Kawakami T, Yanagizawa K, Honma A, Souma S, Nakayama K, Miyakawa M, Taniguchi T, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Orimo S i, Toyoda M, Saito S, Kondo T, Sato T 2023 Nano Lett. 23 1673

    [14]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864

    [15]

    Lv B, Qian T, Ding H 2019 Nat. Rev. Phys. 1 609

    [16]

    Zhong J, Yang M, Shi Z, Li Y, Mu D, Liu Y, Cheng N, Zhao W, Hao W, Wang J, Yang L, Zhuang J, Du Y 2023 Nat. Commun. 14 4964

    [17]

    Danzenbächer S, Vyalikh D V, Kummer K, Krellner C, Holder M, Höppner M, Kucherenko Y, Geibel C, Shi M, Patthey L, Molodtsov S L, Laubschat C 2011 Phys. Rev. Lett. 107 267601

    [18]

    Chang P Y, Erten O, Coleman P 2017 Nat. Phys. 13 794

    [19]

    Chen Q, Xu D, Niu X, Peng R, Xu H, Wen C, Liu X, Shu L, Tan S, Lai X, Zhang Y, Lee H, Strocov V, Bisti F, Dudin P, Zhu J X, Yuan H, Kirchner S, Feng D 2018 Phys. Rev. Lett. 120 066403

    [20]

    Zhang Y, Luo X, Feng W, Tan S, Hao Q, Zhang Q, Yuan D, Wang B, Liu Y, Liu Q, Wang X, Luo L, Zhu X, Chen Q, Lai X 2022 Phys. Rev. B 106 045133

    [21]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006

    [22]

    Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, Zhang C, Mou D, Wu Y, Huang L, Lee C C, Huang S M, Wang B, Bansil A, Jeng H T, Neupert T, Kaminski A, Lin H, Jia S, Zahid Hasan M 2015 Nat. Phys. 11 748

    [23]

    Liu Z K, Yang L X, Sun Y, Zhang T, Peng H, Yang H F, Chen C, Zhang Y, Guo Y, Prabhakaran D, Schmidt M, Hussain Z, Mo S K, Felser C, Yan B, Chen Y L 2016 Nat. Mater. 15 27

    [24]

    Belopolski I, Xu S Y, Sanchez D S, Chang G, Guo C, Neupane M, Zheng H, Lee C C, Huang S M, Bian G, Alidoust N, Chang T R, Wang B, Zhang X, Bansil A, Jeng H T, Lin H, Jia S, Hasan M Z 2016 Phys. Rev. Lett. 116 066802

    [25]

    Tanaka H, Telegin A V, Sukhorukov Y P, Golyashov V A, Tereshchenko O E, Lavrov A N, Matsuda T, Matsunaga R, Akashi R, Lippmaa M, Arai Y, Ideta S, Tanaka K, Kondo T, Kuroda K 2023 Phys. Rev. Lett. 130 186402

    [26]

    Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K, Shen Z X 2017 Nat. Phys. 13 683

    [27]

    Schmitt F, Kirchmann P S, Bovensiepen U, Moore R G, Rettig L, Krenz M, Chu J H, Ru N, Perfetti L, Lu D H, Wolf M, Fisher I R, Shen Z X 2008 Science 321 1649

    [28]

    Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y, Avila L M, Kalläne M, Mathias S, Kipp L, Rossnagel K, Bauer M 2011 Nature 471 490

    [29]

    Wang Y, Hsieh D, Sie E, Steinberg H, Gardner D, Lee Y, Jarillo-Herrero P, Gedik N 2012 Phys. Rev. Lett. 109 127401

    [30]

    Seah M P, Dench W 1979 Surf. Interface Anal. 1 2

    [31]

    Ossiander M, Riemensberger J, Neppl S, Mittermair M, Schäffer M, Duensing A, Wagner M S, Heider R, Wurzer M, Gerl M, Schnitzenbaumer M, Barth J V, Libisch F, Lemell C, Burgdörfer J, Feulner P, Kienberger R 2018 Nature 561 374

    [32]

    Fan H 1945 Phys. Rev. 68 43

    [33]

    Berglund C N, Spicer W E 1964 Phys. Rev. 136 A1030

    [34]

    Damascelli A 2004 Phys. Scr. 2004 61

    [35]

    Strocov V 2003 J. Electron Spectrosc. Relat. Phenom. 130 65

    [36]

    Strocov V, Starnberg H, Nilsson P, Brauer H, Holleboom L 1997 Phys. Rev. Lett. 79 467

    [37]

    Strocov V N, Shi M, Kobayashi M, Monney C, Wang X, Krempasky J, Schmitt T, Patthey L, Berger H, Blaha P 2012 Phys. Rev. Lett. 109 086401

    [38]

    Leemann S, Liu S, Hexemer A, Marcus M, Melton C, Nishimura H, Sun C 2019 Phys. Rev. Lett. 123 194801

    [39]

    Goodman J, King M, Dolier E, Wilson R, Gray R, McKenna P 2023 High Power Laser Sci. Eng. 11 e34

    [40]

    Pan D, Fan J, Nie Z, Sun Z, Zhang J, Tong Y, He B, Song C, Kohmura Y, Yabashi M, Ishikawa T, Shen Y, Jiang H 2022 IUCrJ 9 223

    [41]

    Zhou Z, Li C, Bi X, Zhang C, Huang Y, Zhuang J, Hua W, Dong Z, Zhao L, Zhang Y, Dong Y 2023 npj Comput. Mater. 9 58

    [42]

    Asahara A, Morita H, Ono K, Mitsumata C, Yano M, Shoji T 2019 In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, vol. 33 of AAAI’19/IAAI’19/EAAI’19 (Honolulu, Hawaii, USA: AAAI), p 9410

    [43]

    Chang M C, Wei Y, Chen W R, Do C 2020 MRS Commun. 10 11

    [44]

    Belič I, Poniku B, Jenko M 2012 Surf. Interface Anal. 44 1141

    [45]

    Yoon T, Kim S W, Byun H, Kim Y, Carter C D, Do H 2023 Combust. Flame 248 112583

    [46]

    Planckaert N, Demeulemeester J, Laenens B, Smeets D, Meersschaut J, L’abbé C, Temst K, Vantomme A 2010 J. Synchrot. Radiat. 17 86

    [47]

    Martini A, Guda S, Guda A, Smolentsev G, Algasov A, Usoltsev O, Soldatov M, Bugaev A, Rusalev Y, Lamberti C, Soldatov A 2020 Comput. Phys. Commun. 250 107064

    [48]

    Roch L M, Saikin S K, Hase F, Friederich P, Goldsmith R H, León S, Aspuru-Guzik A 2020 ACS Nano 14 6589

    [49]

    Scarborough N M, Godaliyadda G M D P, Ye D H, Kissick D J, Zhang S, Newman J A, Sheedlo M J, Chowdhury A U, Fischetti R F, Das C, Buzzard G T, Bouman C A, Simpson G J 2017 J. Synchrot. Radiat. 24 188

    [50]

    Ke T W, Brewster A S, Yu S X, Ushizima D, Yang C, Sauter N K 2018 J. Synchrot. Radiat. 25 655

    [51]

    Sullivan B, Archibald R, Azadmanesh J, Vandavasi V G, Langan P S, Coates L, Lynch V, Langan P 2019 J. Appl. Crystallogr. 52 854

    [52]

    Lolla S, Liang H, Kusne A G, Takeuchi I, Ratcliff W 2022 J. Appl. Crystallogr. 55 882

    [53]

    Boulle A, Debelle A 2023 Mach. Learn.: Sci. Technol. 4 015002

    [54]

    Zhao C, Yu W, Li L 2023 Mater. Des. 228 111828

    [55]

    Kopp R, Joseph J, Ni X, Roy N, Wardle B L 2022 Adv. Mater. 34 2107817

    [56]

    Hendriksen A A, Bührer M, Leone L, Merlini M, Vigano N, Pelt D M, Marone F, Di Michiel M, Batenburg K J 2021 Sci Rep 11 11895

    [57]

    Huang D, Liu J, Qian T, Yang Y F 2023 Sci. China Phys. Mech. Astron. 66 267011

    [58]

    Pelzer K, Schwarz N, Harder R 2021 J. Appl. Crystallogr. 54 523

    [59]

    Thakur R S, Chatterjee S, Yadav R N, Gupta L 2021 IEEE Access 9 93338

    [60]

    Kim Y, Oh D, Huh S, Song D, Jeong S, Kwon J, Kim M, Kim D, Ryu H, Jung J, Kyung W, Sohn B, Lee S, Hyun J, Lee Y, Kim Y, Kim C 2021 Rev. Sci. Instrum. 92 073901

    [61]

    Restrepo F, Zhao J, Chatterjee U 2022 Rev. Sci. Instrum. 93 065106

    [62]

    Liu J, Huang D, Yang Y f, Qian T 2023 Phys. Rev. B 107 165106

    [63]

    Sun E 2022 In 2022 IEEE MIT Undergraduate Research Technology Conference (URTC), vol. 96 (Cambridge, MA, USA: IEEE), p 1

    [64]

    Iwasawa H, Ueno T, Masui T, Tajima S 2022 npj Quantum Mater. 7 24

    [65]

    Melton C N, Noack M M, Ohta T, Beechem T E, Robinson J, Zhang X, Bostwick A, Jozwiak C, Koch R J, Zwart P H, Hexemer A, Rotenberg E 2020 Mach. Learn.: Sci. Technol. 1 045015

    [66]

    Ekahana S A, Winata G I, Soh Y, Tamai A, Milan R, Aeppli G, Shi M 2023 Mach. Learn.: Sci. Technol. 4 035021

    [67]

    Park S H, Park H, Lee H, Kim H S 2021 J. Korean Phys. Soc. 79 1199

    [68]

    Pielsticker L, Nicholls R L, DeBeer S, Greiner M 2023 Anal. Chim. Acta 1271 341433

    [69]

    Xian R P, Stimper V, Zacharias M, Dendzik M, Dong S, Beaulieu S, Schölkopf B, Wolf M, Rettig L, Carbogno C, Bauer S, Ernstorfer R 2023 Nat. Comput. Sci. 3 101

    [70]

    Norman M, Eschrig M, Kaminski A, Campuzano J 2001 Phys. Rev. B 64 184508

    [71]

    Zhang H, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T, Zhou S 2022 Nat. Rev. Method. Prim. 2 54

    [72]

    Iwasawa H, Yoshida Y, Hase I, Shimada K, Namatame H, Taniguchi M, Aiura Y 2013 Sci Rep 3 1930

    [73]

    Yamaji Y, Yoshida T, Fujimori A, Imada M 2021 Phys. Rev. Res. 3 043099

    [74]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [75]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [76]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [77]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [78]

    Zhu X, Louie S G 1991 Phys. Rev. B 43 14142

    [79]

    Zanolli Z, Fuchs F, Furthmüller J, von Barth U, Bechstedt F 2007 Phys. Rev. B 75 245121

    [80]

    Aryasetiawan F, Gunnarsson O 1998 Rep. Prog. Phys. 61 237

    [81]

    Reining L 2018 Wiley Interdiscip. Rev.-Comput. Mol. Sci. 8 e1344

    [82]

    Golze D, Dvorak M, Rinke P 2019 Front. Chem. 7 377

    [83]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [84]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C, Sutton A P 1998 Phys. Rev. B 57 1505

    [85]

    Yu M, Yang S, Wu C, Marom N 2020 npj Comput. Mater. 6 180

    [86]

    Harun K, Salleh N A, Deghfel B, Yaakob M K, Mohamad A A 2020 Results Phys. 16 102829

    [87]

    Cococcioni M, De Gironcoli S 2005 Phys. Rev. B 71 035105

    [88]

    Kulik H J, Cococcioni M, Scherlis D A, Marzari N 2006 Phys. Rev. Lett. 97 103001

    [89]

    Mosey N J, Carter E A 2007 Phys. Rev. B 76 155123

    [90]

    Mosey N J, Liao P, Carter E A 2008 J. Chem. Phys. 129 014103

    [91]

    Aryasetiawan F, Karlsson K, Jepsen O, Schönberger U 2006 Phys. Rev. B 74 125106

    [92]

    Miyake T, Aryasetiawan F 2008 Phys. Rev. B 77 085122

    [93]

    Şaşıoğlu E, Friedrich C, Blügel S 2011 Phys. Rev. B 83 121101

    [94]

    Setvin M, Franchini C, Hao X, Schmid M, Janotti A, Kaltak M, Van de Walle C G, Kresse G, Diebold U 2014 Phys. Rev. Lett. 113 086402

    [95]

    Falletta S, Pasquarello A 2022 npj Comput. Mater. 8 263

    [96]

    Tavadze P, Boucher R, Avendaño-Franco G, Kocan K X, Singh S, Dovale-Farelo V, Ibarra-Hernández W, Johnson M B, Mebane D S, Romero A H 2021 npj Comput. Mater. 7 182

    [97]

    Golze D, Hirvensalo M, Hernández-León P, Aarva A, Etula J, Susi T, Rinke P, Laurila T, Caro M A 2022 Chem. Mat. 34 6240

    [98]

    Sun Q, Xiang Y, Liu Y, Xu L, Leng T, Ye Y, Fortunelli A, Goddard III W A, Cheng T 2022 J. Phys. Chem. Lett. 13 8047

    [99]

    Yang S, Schröter N B M, Strocov V N, Schuwalow S, Rajpalk M, Ohtani K, Krogstrup P, Winkler G W, Gukelberger J, Gresch D, Aeppli G, Lutchyn R M, Marom N 2022 Adv. Quantum Technol. 5 2100033

    [100]

    Jardine M J A, Dardzinski D, Yu M, Purkayastha A, Chen A H, Chang Y H, Engel A, Strocov V N, Hocevar M, Palmstroffm C, Frolov S M, Marom N 2023 ACS Appl. Mater. Interfaces 15 16288

    [101]

    Bubert H, Hillig H 2000 Microchim. Acta 133 95

    [102]

    Kim B, Kim W S 2007 Microelectron. Eng. 84 584

    [103]

    Kim B, Kim G T, Lee H J 2008 Mater. Manuf. Process. 23 528

    [104]

    Kim B, Kim J, Choi S 2009 Expert Syst. Appl. 36 11347

    [105]

    Englert T, Gruber F, Stiedl J, Green S, Jacob T, Rebner K, Grählert W 2021 Sensors 21 5595

    [106]

    Drera G, Kropf C M, Sangaletti L 2020 Mach. Learn.: Sci. Technol. 1 015008

    [107]

    Baker N, Alexander F, Bremer T, Hagberg A, Kevrekidis Y, Najm H, Parashar M, Patra A, Sethian J, Wild S, Willcox K, Lee S 2019 Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence. Report, USDOE Offce of Science (SC), Washington, DC (United States)

    [108]

    Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park C W, Choudhary A, Agrawal A, Billinge S J L, Holm E, Ong S P, Wolverton C 2022 npj Comput. Mater. 8 59

    [109]

    Cranmer M, Sanchez-Gonzalez A, Battaglia P, Xu R, Cranmer K, Spergel D, Ho S 2020 In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS ’20 (Vancouver, BC, Canada: Curran Associates Inc.), p 17429

    [110]

    Cranmer M, Greydanus S, Hoyer S, Battaglia P, Spergel D, Ho S 2020 arXiv:2003.04630 [physics.comp-ph]

    [111]

    Samarakoon A M, Laurell P, Balz C, Banerjee A, Lampen-Kelley P, Mandrus D, Nagler S E, Okamoto S, Tennant D A 2022 Phys. Rev. Res. 4 L022061

    [112]

    Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys. 148 241722

    [113]

    Sobral J A, Obernauer S, Turkel S, Pasupathy A N, Scheurer M S 2023 Nat. Commun. 14 5012

    [114]

    Chen Z, Andrejevic N, Drucker N C, Nguyen T, Xian R P, Smidt T, Wang Y, Ernstorfer R, Tennant D A, Chan M, Li M 2021 Chem. Phys. Rev. 2 031301

    [115]

    Doucet M, Samarakoon A M, Do C, Heller W T, Archibald R, Tennant D A, Proffen T, Granroth G E 2020 Mach. Learn.: Sci. Technol. 2 023001

    [116]

    Chitturi S R, Ratner D, Walroth R C, Thampy V, Reed E J, Dunne M, Tassone C J, Stone K H 2021 J. Appl. Crystallogr. 54 1799

    [117]

    Matsumura T, Nagamura N, Akaho S, Nagata K, Ando Y 2019 Sci. Technol. Adv. Mater. 20 733

    [118]

    Xi B, Tse K F, Kok T F, Chan H M, Chan M K, Chan H Y, Clinton Wong K Y, Robin Yuen S H, Zhu J 2022 J. Phys. Chem. C 126 12264

    [119]

    Bergstra J, Bengio Y 2012 J. Mach. Learn. Res. 13 281

    [120]

    Bergstra J, Bardenet R, Bengio Y, Kégl B 2011 In Proceedings of the 24th International Conference on Neural Information Processing Systems, vol. 24 of NIPS’11 (Granada, Spain: Curran Associates, Inc.), p 2546

    [121]

    Gardner J R, Kusner M J, Xu Z E, Weinberger K Q, Cunningham J P 2014 In Proceedings of the 31st International Conference on International Conference on Machine Learning, vol. 32 of ICML’14 (Beijing, China: JMLR.org), p II–937

    [122]

    Bergstra J, Yamins D, Cox D 2013 In Proceedings of the 30th International Conference on Machine Learning, vol. 28 of ICML’13 (Atlanta, GA, USA: JMLR.org), p I–115

    [123]

    Akiba T, Sano S, Yanase T, Ohta T, Koyama M 2019 In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, vol. 18 of KDD ’ 19 (Anchorage, AK, USA: ACM), p 2623

    [124]

    Kvasnicka V, Sklenak S, Pospichal J 1992 J. Chem. Inf. Comput. Sci. 32 742

    [125]

    Simine L, Allen T C, Rossky P J 2020 Proc. Natl. Acad. Sci. 117 13945

    [126]

    Urbina F, Batra K, Luebke K J, White J D, Matsiev D, Olson L L, Malerich J P, Hupcey M A, Madrid P B, Ekins S 2021 Anal. Chem. 93 16076

    [127]

    Wu X, Zhao Z, Tian R, Niu Y, Gao S, Liu H 2021 Spectroc. Acta Pt. A: Molec. Biomolec. Spectr. 244 118841

    [128]

    Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G 2009 IEEE Trans. Neural Netw. 20 61

    [129]

    Coley C W, Jin W, Rogers L, Jamison T F, Jaakkola T S, Green W H, Barzilay R, Jensen K F 2019 Chem. Sci. 10 370

    [130]

    Stärk H, Beaini D, Corso G, Tossou P, Dallago C, Günnemann S, Lió P 2022 In Proceedings of the 39th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research. PMLR (Baltimore, MD, USA: PMLR), p 20479

    [131]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301

    [132]

    Gao W, Mahajan S P, Sulam J, Gray J J 2020 Patterns 1 100142

    [133]

    Choudhary K, DeCost B 2021 npj Comput. Mater. 7 185

    [134]

    Bang K, Yeo B C, Kim D, Han S S, Lee H M 2021 Sci Rep 11 11604

    [135]

    Kong S, Ricci F, Guevarra D, Neaton J B, Gomes C P, Gregoire J M 2022 Nat. Commun. 13 949

    [136]

    Fung V, Ganesh P, Sumpter B G 2022 Chem. Mat. 34 4848

    [137]

    Kaundinya P R, Choudhary K, Kalidindi S R 2022 JOM 74 1395

    [138]

    Masood H, Sirojan T, Toe C Y, Kumar P V, Haghshenas Y, Sit P H, Amal R, Sethu V, Teoh W Y 2023 Cell Rep. Phys. Sci. 4 101555

    [139]

    Lee J, Asahi R 2021 Comput. Mater. Sci. 190 110314

    [140]

    Li B, Rangarajan S 2022 Comput. Chem. Eng. 157 107599

    [141]

    Tian S I P, Ren Z, Venkataraj S, Cheng Y, Bash D, Oviedo F, Senthilnath J, Chellappan V, Lim Y F, Aberle A G, MacLeod B P, Parlane F G L, Berlinguette C P, Li Q, Buonassisi T, Liu Z 2023 Digit. Discov. 2 1334

    [142]

    Zuo H, Zhang G, Pedrycz W, Behbood V, Lu J 2016 IEEE Trans. Fuzzy Syst. 25 1795

    [143]

    Wang L, Zhang C, Bai R, Li J, Duan H 2020 Chem. Commun. 56 9368

    [144]

    Yamada H, Liu C, Wu S, Koyama Y, Ju S, Shiomi J, Morikawa J, Yoshida R 2019 ACS Central Sci. 5 1717

    [145]

    Pan S J, Yang Q 2009 IEEE Trans. Knowl. Data Eng. 22 1345

    [146]

    Xu P, Ji X, Li M, Lu W 2023 npj Comput. Mater. 9 42

  • [1] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, doi: 10.7498/aps.73.20231618
    [2] Yang Zhang-Zhang, Liu Li, Wan Zhi-Tao, Fu Jia, Fan Qun-Chao, Xie Feng, Zhang Yi, Ma Jie. Combining machine learning algorithm to improve prediction performance of ab initio method for vibrational energy spectra of HF/HBr/H35Cl/Na35Cl. Acta Physica Sinica, doi: 10.7498/aps.72.20221953
    [3] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, doi: 10.7498/aps.71.20211625
    [4] Wang En, Dong Wen-Han, Zhou Hui, Liu Meng, Ji Hong-Yan, Meng Sheng, Sun Jia-Tao. Nonequilibrium states in quantum materials under time-period driving. Acta Physica Sinica, doi: 10.7498/aps.70.20201808
    [5] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, doi: 10.7498/aps.70.20210831
    [6] Deng Tao, Yang Hai-Feng, Zhang Jing, Li Yi-Wei, Yang Le-Xian, Liu Zhong-Kai, Chen Yu-Lin. Progress of ARPES study on topological semimetals. Acta Physica Sinica, doi: 10.7498/aps.68.20191544
    [7] Feng Xiao-Jing, Guo Wei, Lu Xing-Qiang, Yao Hong-Bin, Li Yue-Hua. Theoretical investigation of femtosecond-resolved photoelectron spectra of three-level ladder K2 molecules. Acta Physica Sinica, doi: 10.7498/aps.64.143303
    [8] Zhang Min, Tang Tian-Tian, Zhang Chao-Min. Theoretical study of the influence of femtosecond pump-probe pluse on the photoionization of NaLi molecule. Acta Physica Sinica, doi: 10.7498/aps.63.023302
    [9] Li Yi-Ding, Zhang Peng-Fei, Zhang Hui, Xu Hong-Liang. Modification from the spin to the synchrotron radiation from a relativistic electron. Acta Physica Sinica, doi: 10.7498/aps.62.094103
    [10] Zhang Qiang, Hiroyuki Toda. Synchrotron K-edge subtraction imaging and its application to metallic foams. Acta Physica Sinica, doi: 10.7498/aps.60.114103
    [11] Wu Hai-Fei, Zhang Han-Jie, Liao Qing, Lu Yun-Hao, Si Jian-Xiao, Li Hai-Yang, Bao Shi-Ning, Wu Hui-Zhen, He Pi-Mo. Mn/PbTe(111) interface behavior studied by photoemission. Acta Physica Sinica, doi: 10.7498/aps.58.1310
    [12] Zhang Wen-Hua, Mo Xiong, Wang Guo-Dong, Wang Li-Wu, Xu Fa-Qiang, Pan Hai-Bin, Shi Min-Min, Chen Hong-Zheng, Wang Mang. Study of electronic structure of 3, 4, 9, 10-perylenetetracarboxylic bisimidazole/Ag interface by photoemission. Acta Physica Sinica, doi: 10.7498/aps.56.4936
    [13] Yi Rong-Qing, Yang Guo-Hong, Cui Yan-Li, Du Hua-Bing, Wei Min-Xi, Dong Jian-Jun, Zhao Yi-Dong, Cui Ming-Qi, Zheng Lei. Study of X-ray detector system characteristics on the 3B3 medium energy beamline in BSRF. Acta Physica Sinica, doi: 10.7498/aps.55.6287
    [14] Yuan Yong-Bo, Liu Yu-Zhen, Deng Kai-Ming, Yang Jin-Long. Assignment of photoelectron spectra of SiN cluster. Acta Physica Sinica, doi: 10.7498/aps.55.4496
    [15] Huang Chao-Qun, Wei Li-Xia, Yang Bin, Yang Rui, Wang Si-Sheng, Shan Xiao-Bin, Qi Fei, Zhang Yun-Wu, Sheng Liu-Si, Hao Li-Qing, Zhou Shi-Kang, Wang Zhen-Ya. Photoionization and dissociative photoionization study of HFC-152a using synchrotron radiation. Acta Physica Sinica, doi: 10.7498/aps.55.1083
    [16] Wang Si-Sheng, Kong Rui-Hong, Tian Zhen-Yu, Shan Xiao-Bin, Zhang Yun-Wu, Sheng Liu-Si, Wang Zhen-Ya, Hao Li-Qing, Zhou Shi-Kang. Research on photoionization of Ar·NO cluster using synchrotron radiation. Acta Physica Sinica, doi: 10.7498/aps.55.3433
    [17] Ge Yu-Cheng. A new method for directly measuring frequency and intensity temporal profiles of attosecond XUV pulse simultaneously and completely. Acta Physica Sinica, doi: 10.7498/aps.54.2653
    [18] Zou Chong-Wen, Sun Bai, Wang Guo-Dong, Zhang Wen-Hua, Xu Peng-Shou, Pan Hai-Bin, Xu Fa-Qiang, Yin Zhi-Jun, Qiu Kai. Synchrotron radiation study on Au/GaN(0001) interface with low coverage. Acta Physica Sinica, doi: 10.7498/aps.54.3793
    [19] Cui Da-Fu, Wang Huan-Hua, Dao Shou-Yu, Zhou Yue-Liang, ChenZheng Hao, Yang Guo-Zheng, Liu Feng-Qin, K .Ibrahim, Qian Hai-Jie. . Acta Physica Sinica, doi: 10.7498/aps.51.187
    [20] Lv Bin, Lv Ping, Shi Shen-Lei, Zhang Jian-Hua, Tang Jian-Xin, Lou Hui, He Pi-Mo, Bao Shi-Ning. . Acta Physica Sinica, doi: 10.7498/aps.51.2644
Metrics
  • Abstract views:  54
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  26 September 2024

/

返回文章
返回