Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of topologically close-packed clusters on the solidification pathway of metallic tantalum liquid under high pressure

Mo Yun-Fei Jiang Li-Gui Lang Lin Wen Da-Dong Zhang Hai-Tao Li Yuan Tian Ze-An Peng Ping Liu Rang-Su

Citation:

Influence of topologically close-packed clusters on the solidification pathway of metallic tantalum liquid under high pressure

Mo Yun-Fei, Jiang Li-Gui, Lang Lin, Wen Da-Dong, Zhang Hai-Tao, Li Yuan, Tian Ze-An, Peng Ping, Liu Rang-Su
cstr: 32037.14.aps.73.20241089
PDF
HTML
Get Citation
  • The main microstructures in metallic liquids (or supercooled liquids) play a decisive role in determining the final solidification pathway (crystallization or amorphization). However, what kind of microstructure plays a critical role is constantly explored and studied by scholars. Some of previous theoretical and experimental studies have suggested that icosahedron (ICO) clusters (or ICO short-range order) in metallic liquids possess lower energy than their corresponding crystals, and high abundance of ICO clusters can increase the nucleation barriers and promote amorphous transformation. Current research results indicate that the content of various clusters (especially ICO clusters) in many metallic liquids is relatively low. Therefore, it is significant to identify which microstructure plays a critical role in metallic liquids.In this work, the rapid solidification processes of tantalum (Ta) metallic liquid under various pressure conditions are investigated by using molecular dynamic (MD) simulation, and the microstructure evolutions in different solidification processes are quantitatively analyzed through the average atomic energy, pair distribution function, and largest standard cluster analysis (LaSCA). The results show that, compared with the cluster with low content of ICO, topologically close-packed (TCP) clusters are not only more abundant but also play a more decisive role in determining the solidification path of Ta metallic liquids. At a pressure P∈[0, 8.75] GPa, the TCP clusters in Ta metallic liquid not only exhibit low energy and a highly stable state, but also are highly interconnected with each other and resist decomposition, thereby promoting the amorphous transformation of the Ta metallic liquid. At pressure P∈[9.375, 50] GPa, the TCP clusters in Ta metallic liquid are in a metastable state, many TCP clusters with high energy state can easily transform into other clusters in the liquid-solid transition process. In this stage, nucleation and growth of the body-centered cubic (BCC) embryo occur mainly in areas where TCP clusters are stacked sparsely, eventually Ta metallic liquid forms a perfect BCC crystal .
      Corresponding author: Lang Lin, 12020013@hnist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004053) and the Scientific Research Fund of Education Department of Hunan Province, China (Grant Nos. 23A0492, 22C0581).
    [1]

    Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei B B 2024 Adv. Mater. 36 2313162Google Scholar

    [2]

    Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar

    [3]

    Wang H P, Li M X, Zou P F, Cai X, Hu L, Wei B B 2018 Phys. Rev. B. 98 063106Google Scholar

    [4]

    Zou P F, Wang H P, Yang S J, Hu L, Wei B B 2018 Metall. Mater. Trans. A 49 5488Google Scholar

    [5]

    陈长军, 张超, 王晓南, 张敏, 敬和民 2014 热加工工艺 43 5Google Scholar

    Chen C J, Zhang C, Wang X N, Zhang M, Jing H M 2014 Hot Working Technology 43 5Google Scholar

    [6]

    何季麟, 张学清, 杨国启, 郑爱国 2014 中国材料进展 33 545Google Scholar

    He J L, Zhang X Q, Yang Q G, Zheng A G 2014 Mater. China 33 545Google Scholar

    [7]

    张嘉祺, 巩琛, 冯典英, 黄辉, 李颖, 李本涛 2024 山东化工 53 94Google Scholar

    Zhang J Y, Gong C, Feng D Y, Huang H, Li Y, Li B T 2024 Shandong Chem. Industry 53 94Google Scholar

    [8]

    Gladczuk L, Patel A, Demaree J D, Sosnowski M 2005 Thin Solid Films 476 295Google Scholar

    [9]

    Marcus R B, Quigley S 1968 Thin Solid Films 2 467Google Scholar

    [10]

    Read M H, Altman C 1965 Appl. Phys. Lett. 7 51Google Scholar

    [11]

    Janish M T, Kotula P G, Boyce B L, Carter C B 2015 J. Mater. Sci. 50 3706Google Scholar

    [12]

    Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H, Yang L H 2002 J. Phys. Condens. Mater. 14 2825Google Scholar

    [13]

    Moriarty J A 1990 Phys. Rev. B 42 1609Google Scholar

    [14]

    Moriarty J A 1994 Phys. Rev. B 49 12431Google Scholar

    [15]

    Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M V, Soderlind P, Streitz F H, Tang M J, Yang L H 2006 J. Mater. Res. 21 563Google Scholar

    [16]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [17]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43Google Scholar

    [18]

    Kelton K, Gangopadhyay A K, Kim T H, Lee G W 2006 J. Non. Cryst. Solid 352 5318Google Scholar

    [19]

    Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D 2002 Phys. Rev. Lett. 89 075507Google Scholar

    [20]

    Zhang J C, Chen C, Pei Q X, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [21]

    Chen L Y, Mohr M, Wunderlich R K, Fecht H J, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2019 J. Mol. Liq. 293 111544Google Scholar

    [22]

    Sheng H W, Ma E, Kramer M J 2012 JOM 64 856Google Scholar

    [23]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [24]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metall. Sin. 53 1659Google Scholar

    [25]

    Angell C A 1995 Science 267 1924Google Scholar

    [26]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587Google Scholar

    [27]

    Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B. 77 024103Google Scholar

    [28]

    Liu Z L, Zhang X L, Cai L C, Chen X R, Wu Q, Jing F Q 2008 J. Phys. Chem. Solids 69 2833Google Scholar

    [29]

    Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T 2021 Phys. Rev. Lett. 126 175503Google Scholar

    [30]

    Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys 20 28088Google Scholar

    [31]

    Tian Z A, Zhang Z Y, Jiang X, Wei F, Ping S, Wu F 2023 Metals 13 415Google Scholar

    [32]

    Mo Y F, Tian Z A, Zhou L L, Liang Y C, Dong K J, Zhang X F, Zhang H T, Peng P, Liu R S 2024 Chem. Phys. 581 112238Google Scholar

    [33]

    Mōller J, Schottelius A, Caresana M, Boesenberg U, Kim C, Dallari F, Ezquerra T A, Fernández J M, Gelisio L, Glaesener A, Goy C, Hallmann J, Kalinin A, Kurta R P 2024 Phys. Rev. Lett. 132 206102Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [36]

    https://sites.google. com/site/eampotentials/ta [2024-8-3]

    [37]

    Mo Y F, Tian Z A, Lang L, Zhou L L, Liang Y C, Zhang H T, Liu R S, Peng P, Wen D D 2020 Phy. Chem. Chem. Phys. 22 18078Google Scholar

    [38]

    文大冬, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平 2020 物理学报 69 196101Google Scholar

    We D D, Deng Y H, Dai X Y, Wu A R, Tian Z A, Peng P 2020 Acta Phys. Sin. 69 196101Google Scholar

    [39]

    Kbirou M, Atila A, Hasnaoui A 2024 Phys. Scr. 99 085946Google Scholar

    [40]

    Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar

    [41]

    Fan X, Pan D, Li M 2019 J. Phys. Condens. Matte 31 095402Google Scholar

    [42]

    Guder V, Celtek M, Celik F A, Sengul S 2023 J. Non-Cryst. Solid 602 122067Google Scholar

    [43]

    Chen Y X, Feng S D, Lu X Q, Kang H, Ngai K L, Wang L M 2022 J. Mol. Liq. 368 120706Google Scholar

    [44]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [45]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [46]

    Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X, Guan P F 2022 J. Non-Cryst. Solid 576 121247Google Scholar

    [47]

    Jafary-Zadeh M, Aitken Z H, Tavakoli R, Zhang Y W 2018 J. Alloys Compd. 748 679Google Scholar

  • 图 1  BCC和某一类TCP团簇的拓扑结构 (a) 中心原子标号为9655的BCC最大标准团簇; (b) 由根对原子(标号: 9655与5676)与4个共有近邻原子构成的共有近邻子团簇444; (c)图(b)中4个共有近邻原子的拓扑结构; (d), (e)分别表示图(a)中的另一类共有近邻子团簇666和6个共有近邻原子的拓扑结构; (f) 中心原子标号为9875的TCP最大标准团簇; (g), (i)分别表示图(f)中两类共有近邻子团簇555和666; (h), (j) 分别表示图(g)和(i)中共有近邻原子的拓扑结构

    Figure 1.  Topology of BCC and one kind of TCP clusters: (a) A BCC LaSC with a central atom (9655); (b) a CNS of 444 composed of an interconnected root pair (9655 and 5676) and 4 CNNs; (c) the topology of 4 CNNs in panel (b); (d), (e) another CNS of 666 and the topology of 6 CNNs respectively; (f) a TCP LaSC with a central atom (9875); (g), (i) another two CNS of 555 and 666 respectively; (h), (j) the topology of CNNs in panel (g) and (i) respectively.

    图 2  不同压强下系统的原子平均势能量随温度的关系

    Figure 2.  Average atomic potential energy of system dependence of the temperature under different pressure.

    图 3  S(q)和g(r)曲线随温度的演变关系 (a) 0 GPa下的S(q)曲线; (b), (c) 5 GPa和30 GPa下的g(r)曲线; (d) 100 K时g(r)曲线随压强的演变关系

    Figure 3.  S(q) and g(r) curves as a function of temperature: (a) S(q) curves under 0 GPa; (b), (c) the g(r) curves under 5 GPa and 30 GPa respectively; (d) g(r) curves dependence of pressure at 100 K.

    图 4  共有近邻子团簇CNS的百分比与温度的关系 (a) 5 GPa; (b) 30 GPa

    Figure 4.  Percentage of CNS dependence of temperature: (a) 5 GPa; (b) 30 GPa.

    图 5  不同压强下且100 K时CNS的百分含量分布图 (a), (c) 555, 544和433; (b), (d) 444和666

    Figure 5.  At 100 K, the distribution figure for the percentage of the CNS under different pressure: (a), (c) 555, 544 and 433; (b), (d) 444 and 666.

    图 6  主要LaSC百分比在凝固过程中的演变 (a) 5 GPa; (b) 30 GPa; (c) 9.375—50 GPa 下BCC 晶体团簇百分比在凝固过程的演变及对比

    Figure 6.  Percentage of several main LaSCs as a function temperature: (a) 5 GPa; (b) 30 GPa; (c) evolution and comparison of the percentage of BCC crystal clusters during the solidification process under pressure P∈[9.375, 50] GPa.

    图 7  压强为5 GPa和30 GPa时, (a) TCP团簇和BCC团簇百分比与温度的关系, 以及(b) TCP原子和BCC原子的平均势能与温度的关系

    Figure 7.  (a) Percentage of TCP and BCC LaSC dependence of temperature; (b) the average atomic potential energy of TCP and BCC atoms dependence of temperature. The pressure is 5 GPa and 30 GPa

    图 8  选定温度下TCP原子和BCC原子的三维空间分布图 (a)—(d) 5 GPa; (e)—(h) 30 GPa; 白色原子代表TCP原子, 蓝色原子代表BCC原子

    Figure 8.  Snapshots of the samples at selected temperatures for TCP and BCC atoms: (a)–(d) 5 GPa; (e)–(h) 30 GPa. Colour configuration: white and blue balls represent TCP and BCC atoms, respectively.

  • [1]

    Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei B B 2024 Adv. Mater. 36 2313162Google Scholar

    [2]

    Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar

    [3]

    Wang H P, Li M X, Zou P F, Cai X, Hu L, Wei B B 2018 Phys. Rev. B. 98 063106Google Scholar

    [4]

    Zou P F, Wang H P, Yang S J, Hu L, Wei B B 2018 Metall. Mater. Trans. A 49 5488Google Scholar

    [5]

    陈长军, 张超, 王晓南, 张敏, 敬和民 2014 热加工工艺 43 5Google Scholar

    Chen C J, Zhang C, Wang X N, Zhang M, Jing H M 2014 Hot Working Technology 43 5Google Scholar

    [6]

    何季麟, 张学清, 杨国启, 郑爱国 2014 中国材料进展 33 545Google Scholar

    He J L, Zhang X Q, Yang Q G, Zheng A G 2014 Mater. China 33 545Google Scholar

    [7]

    张嘉祺, 巩琛, 冯典英, 黄辉, 李颖, 李本涛 2024 山东化工 53 94Google Scholar

    Zhang J Y, Gong C, Feng D Y, Huang H, Li Y, Li B T 2024 Shandong Chem. Industry 53 94Google Scholar

    [8]

    Gladczuk L, Patel A, Demaree J D, Sosnowski M 2005 Thin Solid Films 476 295Google Scholar

    [9]

    Marcus R B, Quigley S 1968 Thin Solid Films 2 467Google Scholar

    [10]

    Read M H, Altman C 1965 Appl. Phys. Lett. 7 51Google Scholar

    [11]

    Janish M T, Kotula P G, Boyce B L, Carter C B 2015 J. Mater. Sci. 50 3706Google Scholar

    [12]

    Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H, Yang L H 2002 J. Phys. Condens. Mater. 14 2825Google Scholar

    [13]

    Moriarty J A 1990 Phys. Rev. B 42 1609Google Scholar

    [14]

    Moriarty J A 1994 Phys. Rev. B 49 12431Google Scholar

    [15]

    Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M V, Soderlind P, Streitz F H, Tang M J, Yang L H 2006 J. Mater. Res. 21 563Google Scholar

    [16]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [17]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43Google Scholar

    [18]

    Kelton K, Gangopadhyay A K, Kim T H, Lee G W 2006 J. Non. Cryst. Solid 352 5318Google Scholar

    [19]

    Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D 2002 Phys. Rev. Lett. 89 075507Google Scholar

    [20]

    Zhang J C, Chen C, Pei Q X, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [21]

    Chen L Y, Mohr M, Wunderlich R K, Fecht H J, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2019 J. Mol. Liq. 293 111544Google Scholar

    [22]

    Sheng H W, Ma E, Kramer M J 2012 JOM 64 856Google Scholar

    [23]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [24]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metall. Sin. 53 1659Google Scholar

    [25]

    Angell C A 1995 Science 267 1924Google Scholar

    [26]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587Google Scholar

    [27]

    Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B. 77 024103Google Scholar

    [28]

    Liu Z L, Zhang X L, Cai L C, Chen X R, Wu Q, Jing F Q 2008 J. Phys. Chem. Solids 69 2833Google Scholar

    [29]

    Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T 2021 Phys. Rev. Lett. 126 175503Google Scholar

    [30]

    Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys 20 28088Google Scholar

    [31]

    Tian Z A, Zhang Z Y, Jiang X, Wei F, Ping S, Wu F 2023 Metals 13 415Google Scholar

    [32]

    Mo Y F, Tian Z A, Zhou L L, Liang Y C, Dong K J, Zhang X F, Zhang H T, Peng P, Liu R S 2024 Chem. Phys. 581 112238Google Scholar

    [33]

    Mōller J, Schottelius A, Caresana M, Boesenberg U, Kim C, Dallari F, Ezquerra T A, Fernández J M, Gelisio L, Glaesener A, Goy C, Hallmann J, Kalinin A, Kurta R P 2024 Phys. Rev. Lett. 132 206102Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [36]

    https://sites.google. com/site/eampotentials/ta [2024-8-3]

    [37]

    Mo Y F, Tian Z A, Lang L, Zhou L L, Liang Y C, Zhang H T, Liu R S, Peng P, Wen D D 2020 Phy. Chem. Chem. Phys. 22 18078Google Scholar

    [38]

    文大冬, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平 2020 物理学报 69 196101Google Scholar

    We D D, Deng Y H, Dai X Y, Wu A R, Tian Z A, Peng P 2020 Acta Phys. Sin. 69 196101Google Scholar

    [39]

    Kbirou M, Atila A, Hasnaoui A 2024 Phys. Scr. 99 085946Google Scholar

    [40]

    Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar

    [41]

    Fan X, Pan D, Li M 2019 J. Phys. Condens. Matte 31 095402Google Scholar

    [42]

    Guder V, Celtek M, Celik F A, Sengul S 2023 J. Non-Cryst. Solid 602 122067Google Scholar

    [43]

    Chen Y X, Feng S D, Lu X Q, Kang H, Ngai K L, Wang L M 2022 J. Mol. Liq. 368 120706Google Scholar

    [44]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [45]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [46]

    Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X, Guan P F 2022 J. Non-Cryst. Solid 576 121247Google Scholar

    [47]

    Jafary-Zadeh M, Aitken Z H, Tavakoli R, Zhang Y W 2018 J. Alloys Compd. 748 679Google Scholar

  • [1] Wu Bo-Qiang, Liu Hai-Rong, Liu Rang-Su, Mo Yun-Fei, Tian Ze-An, Liang Yong-Chao, Guan Shao-Kang, Huang Chang-Xiong. Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid Mg. Acta Physica Sinica, 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [2] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [3] Deng Yong-He, Wen Da-Dong, Peng Chao, Wei Yan-Ding, Zhao Rui, Peng Ping. Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys. Acta Physica Sinica, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [4] Wen Da-Dong, Peng Ping, Jiang Yuan-Qi, Tian Ze-An, Liu Rang-Su. A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy. Acta Physica Sinica, 2013, 62(19): 196101. doi: 10.7498/aps.62.196101
    [5] Cai Jie, Ji Le, Yang Sheng-Zhi, Zhang Zai-Qiang, Liu Shi-Chao, Li Yan, Wang Xiao-Tong, Guan Qing-Feng. Surface microstructure and stress characteristics in pure zirconium after high current pulsed electron beam irradiation. Acta Physica Sinica, 2013, 62(15): 156106. doi: 10.7498/aps.62.156106
    [6] Deng Yang, Liu Rang-Su, Zhou Qun-Yi, Liu Hai-Rong, Liang Yong-Chao, Mo Yun-Fei, Zhang Hai-Tao, Tian Ze-An, Peng Ping. Simulation study of effect of initial melt temperature on microstructure evolution of liquid metal Ni during solidfication process. Acta Physica Sinica, 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [7] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [8] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [9] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [10] Jia Quan-Jie, Chen Yu, Tian Xue-Yan, Yao Jiang-Feng, Zhao Su-Ling, Fan Xing, Gong Wei, Xu Zheng, Zhang Fu-Jun. Crystallization and microstructure change of semiconductor active thin layer in polymer organic field-effect transistors. Acta Physica Sinica, 2011, 60(2): 027201. doi: 10.7498/aps.60.027201
    [11] Hou Zhao-Yang, Liu Li-Xia, Liu Rang-Su, Tian Ze-An. Simulation of evolution mechanisms of microstructures during rapid solidification of Al-Mg alloy melt. Acta Physica Sinica, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [12] Xu Jin-Feng, Dai Fu-Ping, Wei Bing-Bo. Phase separation of Cu-Pb monotectic alloy during rapid solidification. Acta Physica Sinica, 2007, 56(7): 3996-4003. doi: 10.7498/aps.56.3996
    [13] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [14] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [15] Hou Zhao-Yang, Liu Rang-Su, Wang Xin, Tian Ze-An, Zhou Qun-Yi, Chen Zhen-Hua. Simulation study of effects of initial melt temperature on microstructure of liquid metal Na during solidification processes. Acta Physica Sinica, 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [16] Zhu Cai-Zhen, Zhang Pei-Xin, Xu Qi-Ming, Liu Jian-Hong, Ren Xiang-Zhong, Zhang Qian-Ling, Hong Wei-Liang, Li Lin-Lin. Molecular dynamics study the effect of the ratio Ca/Al on CaO-Al2O3-SiO2 structure. Acta Physica Sinica, 2006, 55(9): 4795-4802. doi: 10.7498/aps.55.4795
    [17] Liu Rang-Su, Qin Shu-Ping, Hou Zhao-Yang, Chen Xiao-Ying, Liu Feng-Xiang. Simulation study of microstructure transition of liquid metal in during solidification processes. Acta Physica Sinica, 2004, 53(9): 3119-3124. doi: 10.7498/aps.53.3119
    [18] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] TAO XIANG-MING, ZENG YAO-WU, FENG CHUN-MU, JIAO ZHENG-KUAN, YE GAO-XIANG. SURFACE MORPHOLOGY AND GROWTH MECHANISM OF THE Al FILMS DEPOSITED ON LIQUID SURFACES. Acta Physica Sinica, 2000, 49(11): 2235-2239. doi: 10.7498/aps.49.2235
Metrics
  • Abstract views:  461
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2024
  • Accepted Date:  03 September 2024
  • Available Online:  27 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回