Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fully relativistic distorted-wave method of studying electron-atom collision excitation process

LI Wenbo LI Bingbing CHEN Hao XIE Luyou WU Zhongwen DING Xiaobin ZHANG Denghong JIANG Jun DONG Chenzhong

Citation:

Fully relativistic distorted-wave method of studying electron-atom collision excitation process

LI Wenbo, LI Bingbing, CHEN Hao, XIE Luyou, WU Zhongwen, DING Xiaobin, ZHANG Denghong, JIANG Jun, DONG Chenzhong
PDF
HTML
Get Citation
  • The electron-atom (ion) collision excitation process is one of the most common inelastic scattering processes. It is of great significance in the fields of astrophysics and laboratory plasma. The relativistic distorted-wave method is a widely used theoretical tool for studying electron-atom (ion) collisions, with the aim of obtaining scattering parameters, such as impact cross sections and rate coefficients.In recent years, we have developed a set of fully relativistic distorted-wave methods and programs of studying the electron-atom collision excitation processes. This method is based on the multi-configuration Dirac-Hartree-Fock (MCDHF) method, together with the corresponding packages GRASP 92/2K/2018 and RATIP. In the present work, continuum state wave functions, total and differential cross sections, state multipoles, integral and differential Stokes parameters of the radiation photon after the impact excitation processes of polarized electrons and atoms are calculated. The influences of electron correlation effects, Breit interaction, and plasma screening effects on the excitation cross sections are discussed. The present methods and programs possess several advantages below.1) In the calculations of the continuum electron wave functions, the direct interaction and exchange interaction between the bound electron and the continuum electron are both included. Then, the anti-symmetrized coupling wave function, which is composed of the continuum electron wave function and the continuum ion wave function, is utilized as the wave function of the system. This method is employed to study the low-energy electron scattering process and medium energy electron scattering process.2) In this method, the target state wave function is obtained form the MCDHF theory and the corresponding GRASP packages. The MCDHF method has the advantage of being able to consider the electron correlation effects, including valence-valence, core-valence, and core-core correlations, as well as the influence of Breit interaction and quantum electrodynamics (QED) effect on the target state wave function. Furthermore, the calculation of the collision excitation matrix elements also includes the contribution of the Breit interaction. Consequently, the present method integrates the advantages of both the MCDHF method and distorted-wave method, thus is made suitable for studying the scattering processes of highly charged ions. In addition, it facilitates the study of the influence of higher-order effects on the collision dynamics, thereby obtaining high-precision theoretical data.3) The current method and program can also be utilized to study the scattering cross section of electron-atom collision excitation processes, as well as the influence of plasma screening effects on collision excitation. Furthermore, the state multipoles, differential Stokes parameters, integral Stokes parameters, and orientation parameters of electron-complex atom collision excitation can be studied in detail by using the present method and program.
  • 图 1  极化电子与光子Stokes参数测量示意图

    Figure 1.  Schematic diagram of polarized electron and photon Stokes parameter measurement.

    图 2  Xe原子的激发截面随入射电子能量的变化, 方形为模型A的结果, 三角形为模型B的结果, 带误差条的圆形为Jung 等[115]的实验(数据图片来自于文献[116])

    Figure 2.  Excitation cross section of Xe atom varies with the energy of incident electron. The square is the result of model A, the triangle is the result of model B, and the circle with error bars is the experiment of Jung et al[115]. From Ref. [116].

    图 3  入射电子能量为8 eV时, 不同计算模型下Hg原子1S0 - 3P1电子碰撞激发微分截面, 其中SC为模型I单组态近似的计算结果, 6l为模型II的计算结果, 7l为模型III的计算结果, Experiment为Goeke等[117]的实验结果

    Figure 3.  Differential cross sections of electron collision excitation of Hg atom 1 S0-3P1 under different calculation models, when the incident electron energy is 8 eV. The SC is the calculation result of single configuration approximation of model I, 6l is the calculation result of model II, 7l is the calculation result of model III, Experiment is the result of Goeke et al[117].

    图 4  从基态2p6 J = 0到2p53s J = 2的磁能级之间的激发截面(数据图片来自于文献[108])

    Figure 4.  Excitation cross sections from ground state 2p6 J = 0 to 2p53s J= 2 magnetic energy levels. From Ref. [108].

    图 5  入射电子能量为45 eV时, 电子与Ca原子从基态到1P1的碰撞激发微分Stokes参数P1, P2和-P3, 其中$ \kappa $为最大分波量子数, Experiment为Dyl等[120]的实验结果

    Figure 5.  Collision excitation differential Stokes parameters P1, P2 and -P3 of electron and Ca atom from ground state to 1 P1, when the incident electron energy is 45 eV. $ \kappa $ is the maximum partial wave quantum number, and Experiment is the result of Dyl et al[120].

    图 6  入射电子能量为8 eV时, 不同关联模型下计算的Hg原子1S0-3P1归一化的态多极, 其中SC为利用单组态计算的结果, MC 6l为考虑了6l关联轨道的计算结果, MC 7l为考虑了7l关联轨道的计算结果, Experiment为Sohn等[122]的实验结果

    Figure 6.  Normalized state multipoles of Hg atom 1S0-3P1 calculated under different correlation models, when the incident electron energy is 8 eV. The SC is the calculation result using a single configuration, MC 6l is the calculation result considering the 6l correlation orbit, MC 7l is the calculation result considering the 7l correlation orbit, and Experiment refers to the results of Sohn et al[122]

    图 7  入射电子能量为15 eV时, 不同关联模型下计算的Hg原子1S0-3P1归一化的态多极, 其中SC为利用单组态计算的结果, MC 6l为考虑了6l关联轨道的计算结果, MC 7l为考虑了7l关联轨道的计算结果, RDW R 为Srivastava等[121]的理论结果, Experiment为Sohn等[122]的实验结果

    Figure 7.  Normalized state multipoles of Hg atom 1S0-3P1 calculated under different correlation models, when the incident electron energy is 15 eV. The SC is the calculation result using a single configuration, MC 6l is the calculation result considering the 6l correlation orbit, MC 7l is the calculation result considering the 7l correlation orbit, RDW R is the theoretical result of Srivastava et al[121], and Experiment refers to the results of Sohn et al[122].

    图 8  从基态1s2 1S0 到 1s2p 1P13P1的激发截面随屏蔽长度的变化(数据图片来自于文献[128])

    Figure 8.  Excitation cross sections from ground state 1s2 1S0 to 1s2p 1P1 and 3P1 vary with shielding length. From Ref. [128].

  • [1]

    Fontes C J, Sampson D H, Zhang H L 1993 Phys. Rev. A 47 1009Google Scholar

    [2]

    Fontes C J, Zhang H L, Sampson D H 1999 Phys. Rev. A 59 295Google Scholar

    [3]

    Ren C, Wu Z W, Jiang J, Xie L Y, Zhang D H, Dong C Z 2018 Phys. Rev. A 98 012711Google Scholar

    [4]

    Jakubowicz H, Moores D L 1981 J. Phys. B: Atom. Mol. Phys. 14 3733Google Scholar

    [5]

    Bartschat K, Burke P G 1987 J. Phys. B: Atom. Mol. Phys. 20 3191Google Scholar

    [6]

    Teng H G 2000 J. Phys. B: Atom. Mol. Phys. 33 L553Google Scholar

    [7]

    Wu D, Loch S D, Pindzola M S, Balance C P 2012 Phys. Rev. A 85 012711Google Scholar

    [8]

    Liu P F, Liu Y P, Zeng J L, Yuan J M 2014 Phys. Rev. A 89 042704Google Scholar

    [9]

    蒋军2007 硕士学位论文(兰州: 西北师范大学)

    Jiang J 2007 M. S. Thesis (Lanzhou: Northwest Normal University

    [10]

    Suckewer S, Hinnov E 1978 Phys. Rev. Lett. 41 756Google Scholar

    [11]

    Eichler J 1990 Phys. Rep. 193 165Google Scholar

    [12]

    Vane C R, Datz S, Dittner P F, Giese J, Jones N L, Krause H F, Rosseel T M, Peterson R S 1994 Phys. Rev. A 49 1847Google Scholar

    [13]

    Wan J J, Dong C Z, Ding X B, Ma X W, Rzadkiewicz J, Stöhlker T, Fritzsche S 2009 Phys. Rev. A 79 022707Google Scholar

    [14]

    Eichler J, Stöhlker T 2007 Phys. Rep. 439 1Google Scholar

    [15]

    Biswas S, Monti J M, Tachino C A, Rivarola R D, Tribedi L C 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115206Google Scholar

    [16]

    Abdurakhmanov I B, Kadyrov A S, Avazbaev S K, Bray I 2016 J. Phys. B: At. Mol. Opt. Phys. 49 115203Google Scholar

    [17]

    Zhang S B, Wang J G, Janev R K 2010 Phys. Rev. Lett. 104 023203Google Scholar

    [18]

    Fang X, Liu X W 2013 Mon. Not. R. Astron. Soc. 429 2791Google Scholar

    [19]

    Menchero L F, Zatsarinny O, Bartschat K 2017 J. Phys. B: At. Mol. Opt. Phys. 50 065203Google Scholar

    [20]

    Cheung C, Safronova M, Porsev S 2021 Symmetry 13 621Google Scholar

    [21]

    Wu Z W, He Z M, Tian Z Q, Dong C Z, Fritzsche S 2022 Phys. Rev. A 105 062813Google Scholar

    [22]

    Li F H, Li J T, Zheng Y, Guo L X, Liu W, Liu Z Y 2023 IEEE T. Plasma Sci. 51 3579Google Scholar

    [23]

    Yan J, Liu Y P, Hou Y, Gao C, Wu J H, Zeng J L, Yuan J M 2023 Chin. Phys. B 32 063101Google Scholar

    [24]

    Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M 2024 Results Phys. 58 107522Google Scholar

    [25]

    刘丽娟2012 硕士学位论文(兰州: 西北师范大学)

    Liu L J 2012 M. S. Thesis (Lanzhou: Northwest Normal University

    [26]

    Silver J D, Varney A J, Margolis H S, Baird P E G, Grant I P, Groves P D, Hallett W A, Handford A T, Hirst P J, Holmes A R, Howie D J H, Hunt R A, Nobbs K A, Roberts M, Studholme W, Wark J S, Williams M T, Levine M A, Dietrich D D, Graham W G, Williams I D, O’Neil R, Rose S J 1994 Rev. Sci. Instrum. 65 1072Google Scholar

    [27]

    Biedermann C, Förster A, Fußmann G, Radtke R 1997 Phys. Scr. T73 360Google Scholar

    [28]

    Crespo J R, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. T80B 502

    [29]

    Beiersdorfer P, Brown G V 2015 Phys. Rev. A 91 032514Google Scholar

    [30]

    Hu Z M, Han X Y, Li Y M, Kato D, Tong X M, Nakamura N 2012 Phys. Rev. Lett. 108 073002Google Scholar

    [31]

    Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C, Xiao J 2022 Phys. Rev. A 105 032820Google Scholar

    [32]

    Dunn G H, Djurić N, Chung Y S, Bannister M, Smith A C H 1995 Nucl. Instr. Meth. Phys. Res. B 98 107Google Scholar

    [33]

    Taylor P O, Dunn G H 1973 Phys. Rev. A 8 2304Google Scholar

    [34]

    Rogers W T, Olsen J Q, Dunn G H 1978 Phys. Rev. A 18 1353Google Scholar

    [35]

    Huber B A, Ristori C, Hervieux P A, Maurel M, Guet C, Andrä H J 1991 Phys. Rev. Lett. 67 1407Google Scholar

    [36]

    Huber B A, Ristori C, Guet C, Küchler D, Johnson W R 1994 Phys. Rev. Lett. 73 2301Google Scholar

    [37]

    Srigengan B, Williams I D, Newell W R 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L605Google Scholar

    [38]

    Bannister M E, Djurić N, Woitke O, Dunn G H, Chung Y S, Smith A C H, Wallbank B, Berrington K A 1999 Int. J. Mass Spectrom. 192 39Google Scholar

    [39]

    Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143Google Scholar

    [40]

    Wallbank B, Bannister M E, Krause H F, Chung Y S, Smith A C H, Djurić N, Dunn G H 2007 Phys. Rev. A 75 052703Google Scholar

    [41]

    Smirnov Yu M 2015 J. Phys. B: At. Mol. Opt. Phys. 48 165204Google Scholar

    [42]

    Smirnov Yu M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 175204Google Scholar

    [43]

    Smirnov Yu M 2017 Russ. J. Phys. Chem. B 11 873Google Scholar

    [44]

    Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 Phys. Rev. A 102 062823Google Scholar

    [45]

    Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808Google Scholar

    [46]

    邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文 2024 物理学报 73 123402Google Scholar

    Shao L, Huang Z K, Wen W Q, Wang S X, Huang H K, Ma W L, Liu C, Wang H B, Chen D Y, Liu X, Zhou X P, Zhao D M, Zhang S F, Zhu L F, Ma X W 2024 Acta Phys. Sin. 73 123402Google Scholar

    [47]

    Liu X J, Zhu L F, Yuan Z S, Li W B, Cheng H D, Huang Y P, Zhong Z P, Xu K Z, Li J M 2003 Phys. Rev. Lett. 91 193203Google Scholar

    [48]

    Du X J, Xu Y C, Wang L H, Li T J, Ma Z R, Wang S X, Zhu L F 2022 Phys. Rev. A 105 012812Google Scholar

    [49]

    Wang D H, Wang S X, Nie Z W, Wang L H, Xu Y C, Du X J, Zhu L F 2022 Plasma Sources Sci. Technol. 31 045012Google Scholar

    [50]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [51]

    Xia Z H, Ren B, Zhang R T, Wei L, Han J, Meng T, Wang J, Ma P, Zhang Y, Tu B, Xiao J, Yao K, Zou Y, Zhu X L, Guo D L, Ma X, Wei B 2022 Astrophysical J. 933 207Google Scholar

    [52]

    Ren B, Ma P, Zhang Y, Wei L, Han J, Xia Z, Wang J, Meng T, Yu W, Zou Y, Yang C L, Wei B 2022 Phys. Rev. A 106 012805Google Scholar

    [53]

    Uhlmann L J, Dall R G, Truscott A G, Hoogerland M D, Baldwin K G H, Buckman S J 2005 Phys. Rev. Lett. 94 173201Google Scholar

    [54]

    Łukomski M, MacAskill J A, Seccombe D P, McGrath C, Sutton S, Teeuwen J, Kedzierski W, Reddish T J, McConkey J W, Wijngaarden W A van 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3535Google Scholar

    [55]

    Byron L J, Dall R G, Truscott A G 2010 Phys. Rev. A 81 013405Google Scholar

    [56]

    Daw A, Gardner L D, Janzen P H, Kohl J L 2006 Phys. Rev. A 73 032709Google Scholar

    [57]

    Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602Google Scholar

    [58]

    Heddle D W O, Samuel M J 1970 J. Phys. B: Atom. Mol. Phys. 3 1593Google Scholar

    [59]

    Stewart M D, Jr, Chilton J E, Boffard J B, Lin C C 2002 Phys. Rev. A 65 032704Google Scholar

    [60]

    McCarthy I E, Weigold E 1988 Rep. Prog. Phys. 51 299Google Scholar

    [61]

    McCarthy I E, Weigold E 1991 Rep. Prog. Phys. 54 789Google Scholar

    [62]

    Fursa D V, Bray I 1995 Phys. Rev. A 52 1279Google Scholar

    [63]

    Bray I, Fursa D V 1996 Phys. Rev. Lett. 76 2674Google Scholar

    [64]

    Bartschat K, Zatsarinny O 2015 Phys. Scr. 90 054006Google Scholar

    [65]

    Zhao G P, Liu L, Chang Z, Wang J G, Janev R K 2018 J. Phys. B: At. Mol. Opt. Phys. 51 085201Google Scholar

    [66]

    Liu Y D, Jia C C, Ma M X, Gao X, Liu L, Wu Y, Chen X J, Wang J G 2024 Chin. Phys. B 33 083401Google Scholar

    [67]

    杨威, 蔡晓红, 于得洋 2005 物理学报 54 2128Google Scholar

    Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128Google Scholar

    [68]

    Whiteford A D, Badnell N R, Ballance C P, O’Mullane M G, Summers H P, Thomas A L 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3179Google Scholar

    [69]

    Fan Q P, Wang W H, Hu F, Cao L F, Zhang Q Q, Liu Y W, Jiang G 2014 Chin. Phys. B 23 113401Google Scholar

    [70]

    Chen Y Q, Jiang X W, Yao L F, Jiang W, Liu H N, Zhang Y 2023 Plasma Sources Sci. Technol. 32 045017Google Scholar

    [71]

    Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773Google Scholar

    [72]

    Meng F C, Chen C Y, Wang Y S, Zou Y M 2007 Chinese Phys. Lett. 24 3404Google Scholar

    [73]

    Gu M F 2008 Can. J. Phys. 86 675

    [74]

    Podpaly Y, Clementson J, Beiersdorfer P, Williamson J, Brown G V, Gu M F 2009 Phys. Rev. A 80 052504Google Scholar

    [75]

    Ma Y L, Liu L, Xie L Y, Wu Y, Zhang D H, Dong C Z, Qu Y Z, Wang J G Chin. Phys. B 31 043401

    [76]

    Zhang C Y, Wu S J, Wang K, Si R, Yao K, Huang Z K, Wen W Q, Ma X W, Chen C Y, Badnell N R 2023 Phys. Rev. A 108 022801Google Scholar

    [77]

    杜贵锋2011 硕士学位论文(兰州: 西北师范大学)

    Du G F 2011 M. S. Thesis (Lanzhou: Northwest Normal University

    [78]

    杨宁选2009 硕士学位论文(兰州: 西北师范大学)

    Yang N X 2009 M. S. Thesis (Lanzhou: Northwest Normal University

    [79]

    Macek J, Jaecks D H 1971 Phys. Rev. A 4 2288Google Scholar

    [80]

    Bartschat K, Blum K, Hanne G F, Kessler J 1981 J. Phys. B: Atom. Mol. Phys. 14 3761Google Scholar

    [81]

    Bartschat K, Scott N S, Blum K, Burke P G 1984 J. Phys. B: Atom. Mol. Phys. 17 269Google Scholar

    [82]

    Khalid S M, Kleinpoppen H 1984 J. Phys. B: Atom. Mol. Phys. 17 243Google Scholar

    [83]

    Raeker A, Blum K, Bartschat K 1993 J. Phys. B: Atom. Mol. Phys. 26 1491Google Scholar

    [84]

    Kłosowski Ł, Piwiski M, Dziczek D, Wiśniewska K, Chwirot S 2007 Meas. Sci. Technol. 18 3801Google Scholar

    [85]

    Kłosowski Ł, Piwiski M, Dziczek D, Pleskacz K, Chwirot S 2009 Phys. Rev. A 80 062709Google Scholar

    [86]

    Hussey M, Murray A, MacGillivray W, King G C 2007 Phys. Rev. Lett. 99 133202Google Scholar

    [87]

    Percival A K, Jhumka S, Hussey M, Murray A J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 105203Google Scholar

    [88]

    Polasik M 1989 Phys. Rev. A 39 616Google Scholar

    [89]

    Wu Z W, Tian Z Q, Dong C Z, Surzhykov A, Fritzsche S 2023 New J. Phys. 25 093039Google Scholar

    [90]

    Ding X B, Koike F, Murakami I, Kato D, Sakaue H A, Dong C Z, Nakamura N 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035003Google Scholar

    [91]

    Wang K, Li S, Jönsson P, Fu N, Dang W, Guo X L, Chen C Y, Yan J, Chen Z B, Si R 2017 J. Quant. Spectrosc. Radiat. Transf. 187 375Google Scholar

    [92]

    颉录有2008 博士学位论文(兰州: 西北师范大学)

    Xie L Y 2008 Ph. D. Dissertation (Lanzhou: Northwest Normal University

    [93]

    武中文2012 硕士学位论文(兰州: 西北师范大学)

    Wu Z W 2012 M. S. Thesis 2012 (Lanzhou: Northwest Normal University

    [94]

    Parpia F A, Fischer C F, Grant I P 1996 Compt. Phys. Commun. 94 249Google Scholar

    [95]

    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Compt. Phys. Commun. 184 2197Google Scholar

    [96]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Compt. Phys. Commun. 237 184Google Scholar

    [97]

    Fritzsche S, Fischer C F, Dong C Z 2000 Compt. Phys. Commun. 124 340Google Scholar

    [98]

    Fritzsche S 2012 Compt. Phys. Commun. 183 1525Google Scholar

    [99]

    Carse G D, Walker D W 1973 J. Phys. B: Atom. Mol. Phys. 6 2529Google Scholar

    [100]

    Walker D W 1974 J. Phys. B: Atom. Mol. Phys. 7 97Google Scholar

    [101]

    Dong C Z, Xie L Y, Zhou X X, Ma X W, Fritzsche S 2003 Hyperfine Interact. 146 161

    [102]

    Li J G, Dong C Z, Yu Y J, Ding X B, Fritzsche S, Fricke B 2007 Sci. China Phys. Mech. 50 707Google Scholar

    [103]

    Xie L Y, Wang J G, Janev R K, Qu Y Z, Dong C Z 2012 Eur. Phys. J. D 66 125Google Scholar

    [104]

    Grant I P, McKenzie B J, Norrington P H, Mayers D F, Pyper N C 1980 Compt. Phys. Commun. 21 207Google Scholar

    [105]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Compt. Phys. Commun. 55 425Google Scholar

    [106]

    Jiang J, Dong C Z, Xie L Y, Wang J G, Yan J, Fritzsche S 2007 Chin. Phys. Lett. 24 691Google Scholar

    [107]

    Li B W, Dong C Z, Jiang J, Wang J G 2010 Eur. Phys. J. D 59 201Google Scholar

    [108]

    Jiang J, Dong C Z, Xie L Y, Wang J G 2008 Phys. Rev. A 78 022709Google Scholar

    [109]

    马小云2013 硕士学位论文(兰州: 西北师范大学)

    Ma X Y 2013 M. S. Thesis (Lanzhou: Northwest Normal University

    [110]

    Grant I P 1970 Adv. Phys. 1 747

    [111]

    Rodrigues G C, Ourdane M A, Bieroń J, Indelicato P, Lindroth E. 2000 Phys. Rev. A 63 012510Google Scholar

    [112]

    Dong C Z, Fritzsche S 2005 Phys. Rev. A 72 012507Google Scholar

    [113]

    Fischer C F, Godefroid M, Brage T, Jönsson P, Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004Google Scholar

    [114]

    Andersen N, Broad J T, Campbell E E B, Gallagher J W, Hertel I V 1997 Phys. Rep. 278 107Google Scholar

    [115]

    Jung R O, Boffard J B, Anderson L W, Lin C C 2005 Phys. Rev. A 72 022723Google Scholar

    [116]

    Jiang J, Dong C Z, Xie L Y, Zhou X X, Wang J G 2008 J. Phys. B: At. Mol. Opt. Phys. 41 245204Google Scholar

    [117]

    Goeke J, Hanne G F, Kessler J 1989 J. Phys. B: Atom. Mol. Phys. 22 1075Google Scholar

    [118]

    Beiersdorfer P, Osterheld A L, Chen M H, Henderson J R, Knapp D A, Levine M A, Marrs R E, Reed K J, Schneider M B, Vogel D A 1990 Phys. Rev. Lett. 65 1995Google Scholar

    [119]

    Takács E, Meyer E S, Gillaspy J D, Roberts J R, Chantler C T, Hudson L T, Deslattes R D, Brown C M, Laming J M, Dubau J, Inal M K 1996 Phys. Rev. A 54 1342Google Scholar

    [120]

    Dyl D, Dziczek D, Piwinski M, Gradziel M, Srivastava R, Dygdala R S, Chwirot S 1999 J. Phys. B: Atom. Mol. Phys. 32 837Google Scholar

    [121]

    Srivastava R, Blumy K, McEachranz R P, Stauffer A D 1996 J. Phys. B: Atom. Mol. Phys. 29 3513Google Scholar

    [122]

    Sohn M, Hanne G F 1992 J. Phys. B: Atom. Mol. Phys. 25 4627Google Scholar

    [123]

    李博文, 蒋军, 董晨钟, 王建国, 丁晓彬 2009 物理学报 58 5274Google Scholar

    Li B W, Jiang J, Dong C Z, Wang J G, Ding X B 2009 Acta Phys. Sin. 58 5274Google Scholar

    [124]

    Whitten B L, Lane N F, Weisheit J C 1984 Phys. Rev. A 29 945Google Scholar

    [125]

    Murillo M S, Weisheit J C 1998 Phys. Rep. 302 1Google Scholar

    [126]

    Hu F 2021 Radiat. Phys. Chem. 180 109293Google Scholar

    [127]

    Pindzola M S, Loch S D, Colgan J, Fontes C J 2008 Phys. Rev. A 77 062707Google Scholar

    [128]

    Jiang J, Dong C Z, Xie L Y 2014 Chin. Phys. Lett. 31 023401Google Scholar

  • [1] Zhou Xu, Wang Chuan, Hu Rong-Hao, Tao Zhi-Hao, Deng Xiao-Liang, Liang Yi-Han, Li Xiao-Ya, Lü Meng, Zhu Wen-Jun. Fast computation approach of electron-impact ionization and excitation cross-sections for atoms and ions with medium- and high-Z elements. Acta Physica Sinica, doi: 10.7498/aps.73.20240213
    [2] Yang Wei, Ding Shi-Yuan, Sun Bao-Yuan. Relativistic Hartree-Fock model of nuclear single-particle resonances based on real stabilization method. Acta Physica Sinica, doi: 10.7498/aps.73.20231632
    [3] Zhao Guo-Dong, Cao Jin, Liang Ting, Feng Min, Lu Ben-Quan, Chang Hong. Accurate calculation of hyperfine-induced 5d6s 3D1,3→6s2 1S0 E2 transitions and hyperfine constants of ytterbium atoms. Acta Physica Sinica, doi: 10.7498/aps.73.20240028
    [4] Wang Xia, Jia Fang-Shi, Yao Ke, Yan Jun, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Hyperfine interaction constants and Landé g factors of clock states of Al-like ions. Acta Physica Sinica, doi: 10.7498/aps.72.20230940
    [5] Zhang Tian-Cheng, Pan Gao-Yuan, Yu You-Jun, Dong Chen-Zhong, Ding Xiao-Bin. Ionization energy and valence electron orbital binding energy of superheavy element Og(Z = 118) and its homologs. Acta Physica Sinica, doi: 10.7498/aps.71.20220813
    [6] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, doi: 10.7498/aps.68.20182136
    [7] Li Shu. Monte Carlo method for computing relativistic photon-Maxwellian electron scattering cross sections. Acta Physica Sinica, doi: 10.7498/aps.67.20180932
    [8] Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei. Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method. Acta Physica Sinica, doi: 10.7498/aps.67.20171817
    [9] Zhang Bin, Zhao Jian, Zhao Zeng-Xiu. Multiconfiguration time-dependent Hartree-Fock treatment of electron correlation in strong-field ionization of H2 molecules. Acta Physica Sinica, doi: 10.7498/aps.67.20172701
    [10] Zhang Ting-Xian, Li Ji-Guang, Liu Jian-Peng. Theoretical study on the isotope shift factors for the 3s2 1S0 → 3s3p 3,1P1o transitions in Al+ ion. Acta Physica Sinica, doi: 10.7498/aps.67.20172261
    [11] Yu Geng-Hua, Liu Hong, Zhao Peng-Yi, Xu Bing-Ming, Gao Dang-Li, Zhu Xiao-Ling, Yang Wei. Theoretical calculations on isotope shifts of Mg I by using relativistic multiconfiguration Dirac-Hartree-Fock method. Acta Physica Sinica, doi: 10.7498/aps.66.113101
    [12] Jiao Fei, Jiang Jun, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong, Chen Zhan-Bin. Theoretical study on electron-impact excitation cross section and polarization for 5s2S1/2 → 5p2P3/2 of Cd. Acta Physica Sinica, doi: 10.7498/aps.64.233401
    [13] Cheng Cheng, Zhang Xiao-Le, Qing Bo, Li Jia-Ming, Gao Xiang. Full-relativistic multi-configuration self-consistent calculation of atomic structures and physical properties——Construction of “quasi-complete basis sets” and configuration interaction calculations. Acta Physica Sinica, doi: 10.7498/aps.59.4547
    [14] Liu Yan-Jun, Dong Chen-Zhong, Jiang Jun, Xie Lu-You. Relativistic distorted-wave calculation of electron impact excitation cross sections of be-like N3+ and O4+ ions. Acta Physica Sinica, doi: 10.7498/aps.58.2320
    [15] Huang Shi-Zhong, Ma Kun, Wu Chang-Yi, Ni Xiu-Bo. Energy and relativistic correction of the 1sns configuration in helium. Acta Physica Sinica, doi: 10.7498/aps.57.5469
    [16] Xie Lu-You, Zhang Zhi-Yuan, Dong Chen-Zhong, Jiang Jun. Fully relativistic distorted-wave calculations for electron impact excitation of highly chargednickel-like ions. Acta Physica Sinica, doi: 10.7498/aps.57.6249
    [17] Fang Quan-Yu, Cai Wei, Shen Zhi-Jun, Li Peng, Zhou Yu, Xu Yuan-Guang, Chen Guo-Xin. . Acta Physica Sinica, doi: 10.7498/aps.44.383
    [18] QU YI-ZHI, GONG XIAO-MIN, LI JIA-MING. RELATIVISTIC EFFECT IN INELASTIC COLLISION OF ELECTRON WITH ATOM OR ION. Acta Physica Sinica, doi: 10.7498/aps.44.1719
    [19] WANG WAN-JUE. RELATIVISTIC MULTICONFIGURATION DIRAC-FOCK CALCULATION OF FINE-STRUCTURE ENERGY LEVELS AND TRANSITION WAVELENGTHS FOR N-LIKE KXIII, CaXIV, ScXV AND TiXVI. Acta Physica Sinica, doi: 10.7498/aps.41.726
    [20] ZHAO ZHONG-XIN, LI JIA-MING. NON- RELATIVISTIC AND RELATIVISTIC ATOMIC CONFIGURATION INTERACTION THEORY EXCITATION ENERGY AND RADIATIVE TRANSITION PROBABILITY. Acta Physica Sinica, doi: 10.7498/aps.34.1469
Metrics
  • Abstract views:  206
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2024
  • Accepted Date:  02 December 2024
  • Available Online:  25 December 2024

/

返回文章
返回