Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure structure and mechanical properties of coherent precipitation strengthened ultrahigh strength maraging stainless steel

YANG Yuxian WANG Zhenhua WANG Qing TANG Caiyu WAN Peng CAO Dahua DONG Chuang

Citation:

Microstructure structure and mechanical properties of coherent precipitation strengthened ultrahigh strength maraging stainless steel

YANG Yuxian, WANG Zhenhua, WANG Qing, TANG Caiyu, WAN Peng, CAO Dahua, DONG Chuang
cstr: 32037.14.aps.74.20241483
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ultra-high strength maraging stainless steels possess many important applications such as in aircraft landing gears owing to their excellent strength and good process ability. However, traditional ultra-high strength maraging stainless steels are facing the challenge of balancing strength and ductility while pursuing ultra-high strength. This is mainly due to the semi-coherent or non-coherent relationship between the precipitated nanoparticles and the body-centered cubic (BCC) martensitic matrix. In this work, a novel ultra-high strength maraging stainless steel (Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.03C-0.23Nb, weight percent, %) is designed using a cluster formula approach. Alloy ingots are prepared by vacuum induction melting under an argon atmosphere, followed by hot rolling at 950 ℃ and multiple passes of cold rolling. Finally, the alloy is aged at 500 ℃ for 288 h. Microstructural characterizations of the alloy in different aging states are performed using electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). As a result, the martensitic structure of the alloy is fragmented and elongated, with high-density dislocations (~1.8×10–3 nm–2) and a large number of coherent B2-NiAl nanoparticles (<5 nm) observed in the BCC martensitic matrix after cold rolling and aging. In terms of mechanical properties, the alloy exhibits significant age-hardening, with a peak-aged hardness of 651 HV after ageing treatment. It also demonstrates an extraordinarily high yield strength (σYS = 2.3 GPa) and a decent elongation (El = 3.6%), indicating a well-balanced strength-ductility property. Finally, the origins of the ultra-high strength in the novel alloy are discussed in depth, showing that the ultra-high strength of this stainless steel comes from the strengthening effect of different microstructures. This study provides valuable guidance for designing high-performance ultra-high strength maraging stainless steels.
      Corresponding author: WANG Zhenhua, ahua@mail.dlut.edu.cn ; WAN Peng, pengwan@midea.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52171152).
    [1]

    杨柯, 牛梦超, 田家龙, 王威 2018 金属学报 54 1567Google Scholar

    Yang K, Niu M C, Tian J L, Wang W 2018 Acta. Metall. Sin. 54 1567Google Scholar

    [2]

    罗海文, 沈国慧 2020 金属学报 56 494Google Scholar

    Luo H W, Shen G H 2020 Acta. Metall. Sin. 56 494Google Scholar

    [3]

    Sun W W, Marceau R K W, Styles M J, Barbier D, Hutchinson C R 2017 Acta Mater. 130 28Google Scholar

    [4]

    Morris Jr J W 2017 Nat. Mater. 16 787Google Scholar

    [5]

    Yang J R, Yu T H, Wang C H 2006 Mater. Sci. Eng. A 438 276

    [6]

    Shi X H, Zeng W D, Zhao Q Y, Peng W W, Kang C 2016 J. Alloys. Compd. 679 184Google Scholar

    [7]

    Wert D E, DiSabella R P 2006 Adv. Mater. Process. 164 34

    [8]

    Ifergane S, Pinkas M, Barkayc Z, Brosh E, Ezersky V, Beeri O, Eliaz N 2017 Mater. Charact. 127 129Google Scholar

    [9]

    Floreen S 1968 Metall. Rev. 13 115Google Scholar

    [10]

    Tewari R, Mazumder S, Batra I S, Dey G K, Banerjee S 2000 Acta Mater. 48 1187Google Scholar

    [11]

    Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, Yang K, San Martín D, Kestens L A I, van der Zwaag S 2010 Acta Mater. 58 4067Google Scholar

    [12]

    Qi L, Jin Y C, Zhao Y H, Yang X M, Zhao H, Han P D 2015 J. Alloys. Compd. 621 383Google Scholar

    [13]

    Moshka O, Pinkas M., Brosh E, Ezersky V, Meshi L 2015 Mater. Sci. Eng. A 638 232Google Scholar

    [14]

    周倩青, 翟玉春 2009 金属学报 45 1249Google Scholar

    Zhou Q Q, Zhai Y C 2009 Acta Metall. Sin. 45 1249Google Scholar

    [15]

    Hättestrand M, Nilsson J O, Stiller K, Liu P, Andersson M 2004 Acta Mater. 52 1023Google Scholar

    [16]

    Ghosh A, Das S, Chatterjee S 2008 Mater. Sci. Eng. A 486 152Google Scholar

    [17]

    Mahmoudi A, Zamanzad Ghavidel M R, Hossein Nedjad S, Heidarzadeh A, Nili Ahmadabadi M 2011 Mater. Charact. 62 976Google Scholar

    [18]

    Leitner H, Schnitzer R, Schober M, Zinner S 2011 Acta Mater. 59 5012Google Scholar

    [19]

    Vaithyanathan V, Chen L Q 2002 Acta Mater. 50 4061Google Scholar

    [20]

    Li H, Liu Y, Liu B 2022 Mater. Sci. Eng. A 842 143099Google Scholar

    [21]

    Niu M C, Zhou G, Wang W, Shahzad M B, Shan Y Y, Yang K 2019 Acta Mater. 179 296Google Scholar

    [22]

    Wan J Q, Ruan H H, Ding Z Y, Kong L B 2023 Scr. Mater. 226 115224Google Scholar

    [23]

    Li K, Yu B, Misra R D K, Han G, Liu S, Shang C J 2018 Mater. Sci. Eng. A 715 485

    [24]

    Ooi S W, Hill P, Rawson M, Bhadeshia H K D H 2013 Mater. Sci. Eng. A 564 485Google Scholar

    [25]

    Liu T Q, Cao Z X, Wang H, Wu G L, Jin J J, Cao W Q 2020 Scr. Mater. 178 285Google Scholar

    [26]

    Li Y C, Yan W, J. D. Cotton, G. J. Ryan, Shen Y F, Wang W, Shan Y Y, Yang K 2015 Mater. Des. 82 56Google Scholar

    [27]

    Hedströma P, Baghsheikhi S, Liu P, Odqvist J 2012 Mater. Sci. Eng. A 534 552Google Scholar

    [28]

    Li J L, Zhang J Q, Li Z, Wang Q, Dong C, Xu F, Sun L X, Liaw P K 2024 J. Mater. Sci. Technol. 186 174Google Scholar

    [29]

    Zhang J X, Wang J C, Harada H, Koizumi Y 2005 Acta Mater. 53 4623Google Scholar

    [30]

    Wang Z H, Wang Q, Niu B, Dong C, Zhang H W, Zhang H F, Liaw P K 2021 Mater. Res. Lett. 9 458Google Scholar

    [31]

    Jiang S H, Wang H, Wu Y, Liu X J, Chen H H, Yao M J, Gault B, Ponge D, Raabe D, Hirata A, Chen M W, Wang Y D, Lu Z P 2017 Nature 544 460Google Scholar

    [32]

    Zhou B C, Liu S F, Wu H H, Luan J H, Guo J M, Yang T, Jiao Z B 2023 Mater. Des. 234 112341Google Scholar

    [33]

    Liang Y J, Wang L J, Wen Y R, Cheng B Y, Wu Q L, Cao T Q, Xiao Q, Xue Y F, Sha G, Wang Y D, Ren Y, Li X Y, Wang L, Wang F C, Cai H N 2018 Nat. Commun. 9 4063Google Scholar

    [34]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065Google Scholar

    [35]

    Pang C, Jiang B B, Shi Y, Wang Q, Dong C 2015 J. Alloys. Compd. 652 63Google Scholar

    [36]

    Wang Z H, Niu B, Wang Q, Dong C, Jie J C, Wang T M, Nieh T G 2021 J. Mater. Sci. Technol. 93 60Google Scholar

    [37]

    Calderon H A, Fine M E, Weertman J R 1987 Metall. Trans. A 19 1135

    [38]

    Vo N Q, Liebscher C H, Rawlings M J S, Asta M, Dunand D C 2014 Acta Mater. 71 89Google Scholar

    [39]

    Czyryca E J 1993 Key Eng. Mater. 84 491

    [40]

    Wen D H, Wang Q, Jiang B B, Zhang C, Li X N, Chen G Q, Tang R, Zhang R Q, Dong C, P. K. Liaw 2018 Mater. Sci. Eng. A 719 27Google Scholar

    [41]

    Bailey N 1993 Welding Steels without Hydrogen Cracking (Cambridge: Woodhead Publishing) p69

    [42]

    Briant C L, Banerji S K 1978 Int. Metal. Rev. 23 164

    [43]

    Hosford W F 2005 Mechanical Behavior of Materials (New York: Cambridge University Press) p16

    [44]

    Leitner H, Schober M, Schnitzer R 2010 Acta Mater. 58 1261Google Scholar

    [45]

    毕正绪 2014 特钢技术 20 11Google Scholar

    Bi Z X 2014 Special Steel Technol. 20 11Google Scholar

    [46]

    Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J 2015 Acta Mater. 98 81Google Scholar

    [47]

    Galindo-Nava E I, Rainforth W M, Rivera-Díaz-del-Castillo P E J 2016 Acta Mater. 117 270Google Scholar

    [48]

    Rivera-Díaz-del-Castillo P E J, Hayashi K, Galindo-Nava E I 2013 Mater. Sci. Technol. 29 1206Google Scholar

    [49]

    Fleischer R L 1961 Acta Matall. 9 966Google Scholar

    [50]

    Lide D R 2008 CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press) pp12–10

    [51]

    Morito S, Yoshida H, Maki T, Huang X 2006 Mater. Sci. Eng. A 438 237

    [52]

    Su J, Raabe D, Li Z M 2019 Acta Mater. 163 40Google Scholar

    [53]

    Kocks U F, Mecking H 2003 Prog. Mater Sci. 48 171Google Scholar

    [54]

    Nembach E 1997 Mater. Sci. Technol. 3 329

    [55]

    Gladman T 1999 Mater. Sci. J. 15 30

    [56]

    Argon A 2007 Strengthening Mechanisms in Crystal Plasticity (Oxford: Oxford University Press) p74

    [57]

    P. M. Kelley 1973 Int. Metall. Rev. 18 31Google Scholar

    [58]

    A. Kelly, R. B. Nicholson 1971 Strengthening Methods in Crystals (London: Elsevier) p37

    [59]

    T. Hong, A. J. Freeman 1991 Phys. Rev. B Condens. Matter. 43 6446Google Scholar

  • 图 1  由Pandat软件计算得到的Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.23Nb-0.03C合金的平衡相图

    Figure 1.  Equilibrium phase diagram of the designed Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.23Nb-0.03C alloy calculated by Pandat software.

    图 2  合金冷轧态(CR)的EBSD反极图(IPF)和相分布图(a), (b); 冷轧态合金TEM明场像及其对应的SAED花样(c); HRTEM图像及其对应的FTT图像(d)

    Figure 2.  EBSD IPF image and phase image of the designed alloy after cold-rolling (CR) treatment (a), (b); TEM bright-field (BF) image and corresponding SAED patterns (c) and High-resolution TEM image and its FTT pattern (d) of CR.

    图 3  12 h时效后CRA合金的微观结构 合金冷轧+时效态(CRA)的EBSD反极图(IPF)和相分布图(a), (b); CRA合金TEM明场、暗场像及其对应的SAED花样(c), (d); CRA合金HRTEM图像及其对应的FTT图像(e), (e1), (e2), 以及衍射环图像(f)

    Figure 3.  Microstructures of 12 h-aged CRA alloys: EBSD IPF image and phase image of the CRA alloy (a), (b); TEM bright-field (BF) image and corresponding SAED patterns (c), TEM DF image (d); HRTEM image and its FTT patterns (e), (e1), (e2), and diffraction ring (f) of the CRA alloy.

    图 4  冷轧态合金在时效48 h后的TEM明场(a)、暗场像(b)

    Figure 4.  TEM bright-field image (a), the corresponding dark-field image (b) of 48 h-aged CRA alloy.

    图 5  合金经热轧(HR)处理(a)和热轧+500 ℃/12 h时效(HRA)处理(c)后的EBSD反极图(IPF), HR(b)和HRA(d)处理后的EBSD相图

    Figure 5.  EBSD inverse pole figures (IPFs) of the designed alloy after hot-rolling (HR) treatment (a) and hot-rolling + aging at 500 ℃/12 h (HRA) treatment (c), EBSD phase images of HR (b) and HRA (d).

    图 6  12 h时效HRA合金(a)和12 h时效冷轧+时效态(CRA)合金(c)的晶界分布图, HRA(b)和CRA(d)的核平均取向差(KAM)   

    Figure 6.  Grain boundary distribution maps of 12 h-aged HRA alloys (a) and 12 h-aged CRA alloys (c), kernel average misorientation (KAM) of HRA (b) and CRA (d).

    图 7  CRA合金在500 ℃时效时显微硬度随时效时间的变化(a), 不同热处理状态下合金在室温拉伸下的工程应力-应变曲线(b)和室温三点弯曲下的载荷-位移曲线(c)

    Figure 7.  Variation tendency of microhardness of the CRA alloy with aging time at 500℃ (a), room-temperature engineering stress-strain tensile curves of the current alloy at different heat-treated (b), and 3-points bending test of the current alloy at different heat-treated (c).

    图 8  根据不同强化机制计算得到的CR合金以及时效12 h CRA合金的屈服强度, 黑色星型符号表示通过实验测得的屈服强度

    Figure 8.  Calculated strength increments from different strengthening mechanisms in CR and 12 h-aged CRA alloys, in which the measured yield strength values are also presented with black star symbols for comparison.

    表 1  不同热处理状态下设计合金以及18 Ni(300)[45]H, σYS, σUTS, El, 极限弯曲载荷(FB), 及极限弯曲角度(θB)

    Table 1.  Mechanical properties of the current stainless steel at different heat-treated states and the 18 Ni(300) steel[45], including microhardness (H), yield strength (σYS), ultimate tensile strength (σUTS), elongation to fracture (El), ultimate bending force (FB), and ultimate bending angle (θB).

    StatesH/HVσYS/MPaσUTS/MPaEl/%FB/kNθB/(°)
    HR326±1078711009.38.535.5
    CR404±5140814324.49.714.9
    HRA: 5 h-aged573±6170419403.910.19.7
    CRA: 5 h-aged645±6232623443.622.215.4
    CRA: 12 h-aged641±8225423243.018.217.9
    18 Ni(300)200020507.0
    DownLoad: CSV
  • [1]

    杨柯, 牛梦超, 田家龙, 王威 2018 金属学报 54 1567Google Scholar

    Yang K, Niu M C, Tian J L, Wang W 2018 Acta. Metall. Sin. 54 1567Google Scholar

    [2]

    罗海文, 沈国慧 2020 金属学报 56 494Google Scholar

    Luo H W, Shen G H 2020 Acta. Metall. Sin. 56 494Google Scholar

    [3]

    Sun W W, Marceau R K W, Styles M J, Barbier D, Hutchinson C R 2017 Acta Mater. 130 28Google Scholar

    [4]

    Morris Jr J W 2017 Nat. Mater. 16 787Google Scholar

    [5]

    Yang J R, Yu T H, Wang C H 2006 Mater. Sci. Eng. A 438 276

    [6]

    Shi X H, Zeng W D, Zhao Q Y, Peng W W, Kang C 2016 J. Alloys. Compd. 679 184Google Scholar

    [7]

    Wert D E, DiSabella R P 2006 Adv. Mater. Process. 164 34

    [8]

    Ifergane S, Pinkas M, Barkayc Z, Brosh E, Ezersky V, Beeri O, Eliaz N 2017 Mater. Charact. 127 129Google Scholar

    [9]

    Floreen S 1968 Metall. Rev. 13 115Google Scholar

    [10]

    Tewari R, Mazumder S, Batra I S, Dey G K, Banerjee S 2000 Acta Mater. 48 1187Google Scholar

    [11]

    Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, Yang K, San Martín D, Kestens L A I, van der Zwaag S 2010 Acta Mater. 58 4067Google Scholar

    [12]

    Qi L, Jin Y C, Zhao Y H, Yang X M, Zhao H, Han P D 2015 J. Alloys. Compd. 621 383Google Scholar

    [13]

    Moshka O, Pinkas M., Brosh E, Ezersky V, Meshi L 2015 Mater. Sci. Eng. A 638 232Google Scholar

    [14]

    周倩青, 翟玉春 2009 金属学报 45 1249Google Scholar

    Zhou Q Q, Zhai Y C 2009 Acta Metall. Sin. 45 1249Google Scholar

    [15]

    Hättestrand M, Nilsson J O, Stiller K, Liu P, Andersson M 2004 Acta Mater. 52 1023Google Scholar

    [16]

    Ghosh A, Das S, Chatterjee S 2008 Mater. Sci. Eng. A 486 152Google Scholar

    [17]

    Mahmoudi A, Zamanzad Ghavidel M R, Hossein Nedjad S, Heidarzadeh A, Nili Ahmadabadi M 2011 Mater. Charact. 62 976Google Scholar

    [18]

    Leitner H, Schnitzer R, Schober M, Zinner S 2011 Acta Mater. 59 5012Google Scholar

    [19]

    Vaithyanathan V, Chen L Q 2002 Acta Mater. 50 4061Google Scholar

    [20]

    Li H, Liu Y, Liu B 2022 Mater. Sci. Eng. A 842 143099Google Scholar

    [21]

    Niu M C, Zhou G, Wang W, Shahzad M B, Shan Y Y, Yang K 2019 Acta Mater. 179 296Google Scholar

    [22]

    Wan J Q, Ruan H H, Ding Z Y, Kong L B 2023 Scr. Mater. 226 115224Google Scholar

    [23]

    Li K, Yu B, Misra R D K, Han G, Liu S, Shang C J 2018 Mater. Sci. Eng. A 715 485

    [24]

    Ooi S W, Hill P, Rawson M, Bhadeshia H K D H 2013 Mater. Sci. Eng. A 564 485Google Scholar

    [25]

    Liu T Q, Cao Z X, Wang H, Wu G L, Jin J J, Cao W Q 2020 Scr. Mater. 178 285Google Scholar

    [26]

    Li Y C, Yan W, J. D. Cotton, G. J. Ryan, Shen Y F, Wang W, Shan Y Y, Yang K 2015 Mater. Des. 82 56Google Scholar

    [27]

    Hedströma P, Baghsheikhi S, Liu P, Odqvist J 2012 Mater. Sci. Eng. A 534 552Google Scholar

    [28]

    Li J L, Zhang J Q, Li Z, Wang Q, Dong C, Xu F, Sun L X, Liaw P K 2024 J. Mater. Sci. Technol. 186 174Google Scholar

    [29]

    Zhang J X, Wang J C, Harada H, Koizumi Y 2005 Acta Mater. 53 4623Google Scholar

    [30]

    Wang Z H, Wang Q, Niu B, Dong C, Zhang H W, Zhang H F, Liaw P K 2021 Mater. Res. Lett. 9 458Google Scholar

    [31]

    Jiang S H, Wang H, Wu Y, Liu X J, Chen H H, Yao M J, Gault B, Ponge D, Raabe D, Hirata A, Chen M W, Wang Y D, Lu Z P 2017 Nature 544 460Google Scholar

    [32]

    Zhou B C, Liu S F, Wu H H, Luan J H, Guo J M, Yang T, Jiao Z B 2023 Mater. Des. 234 112341Google Scholar

    [33]

    Liang Y J, Wang L J, Wen Y R, Cheng B Y, Wu Q L, Cao T Q, Xiao Q, Xue Y F, Sha G, Wang Y D, Ren Y, Li X Y, Wang L, Wang F C, Cai H N 2018 Nat. Commun. 9 4063Google Scholar

    [34]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065Google Scholar

    [35]

    Pang C, Jiang B B, Shi Y, Wang Q, Dong C 2015 J. Alloys. Compd. 652 63Google Scholar

    [36]

    Wang Z H, Niu B, Wang Q, Dong C, Jie J C, Wang T M, Nieh T G 2021 J. Mater. Sci. Technol. 93 60Google Scholar

    [37]

    Calderon H A, Fine M E, Weertman J R 1987 Metall. Trans. A 19 1135

    [38]

    Vo N Q, Liebscher C H, Rawlings M J S, Asta M, Dunand D C 2014 Acta Mater. 71 89Google Scholar

    [39]

    Czyryca E J 1993 Key Eng. Mater. 84 491

    [40]

    Wen D H, Wang Q, Jiang B B, Zhang C, Li X N, Chen G Q, Tang R, Zhang R Q, Dong C, P. K. Liaw 2018 Mater. Sci. Eng. A 719 27Google Scholar

    [41]

    Bailey N 1993 Welding Steels without Hydrogen Cracking (Cambridge: Woodhead Publishing) p69

    [42]

    Briant C L, Banerji S K 1978 Int. Metal. Rev. 23 164

    [43]

    Hosford W F 2005 Mechanical Behavior of Materials (New York: Cambridge University Press) p16

    [44]

    Leitner H, Schober M, Schnitzer R 2010 Acta Mater. 58 1261Google Scholar

    [45]

    毕正绪 2014 特钢技术 20 11Google Scholar

    Bi Z X 2014 Special Steel Technol. 20 11Google Scholar

    [46]

    Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J 2015 Acta Mater. 98 81Google Scholar

    [47]

    Galindo-Nava E I, Rainforth W M, Rivera-Díaz-del-Castillo P E J 2016 Acta Mater. 117 270Google Scholar

    [48]

    Rivera-Díaz-del-Castillo P E J, Hayashi K, Galindo-Nava E I 2013 Mater. Sci. Technol. 29 1206Google Scholar

    [49]

    Fleischer R L 1961 Acta Matall. 9 966Google Scholar

    [50]

    Lide D R 2008 CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press) pp12–10

    [51]

    Morito S, Yoshida H, Maki T, Huang X 2006 Mater. Sci. Eng. A 438 237

    [52]

    Su J, Raabe D, Li Z M 2019 Acta Mater. 163 40Google Scholar

    [53]

    Kocks U F, Mecking H 2003 Prog. Mater Sci. 48 171Google Scholar

    [54]

    Nembach E 1997 Mater. Sci. Technol. 3 329

    [55]

    Gladman T 1999 Mater. Sci. J. 15 30

    [56]

    Argon A 2007 Strengthening Mechanisms in Crystal Plasticity (Oxford: Oxford University Press) p74

    [57]

    P. M. Kelley 1973 Int. Metall. Rev. 18 31Google Scholar

    [58]

    A. Kelly, R. B. Nicholson 1971 Strengthening Methods in Crystals (London: Elsevier) p37

    [59]

    T. Hong, A. J. Freeman 1991 Phys. Rev. B Condens. Matter. 43 6446Google Scholar

  • [1] Cheng Da-Zhao, Liu Cai-Yan, Zhang Chao-Ran, Qu Jia-Hui, Zhang Jing. Phase field simulation of intra/intergranular pore morphology evolution in neutron-irradiated austenitic stainless steel. Acta Physica Sinica, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [2] Du Xiao-Jiao, Wei Long, Sun Yu, Hu Shui-Ming. Free electron laser prepared high-intensity metastable helium and helium-like ions. Acta Physica Sinica, 2024, 73(15): 150201. doi: 10.7498/aps.73.20240554
    [3] Qian Jun, Xie Wei, Zhou Xiao-Wei, Tan Jian-Wen, Wang Zhi-Biao, Du Yong-Hong, Li Yan-Hao. Real-time monitoring of high intensity focused ultrasound focal damage based on transducer driving signal. Acta Physica Sinica, 2022, 71(3): 037201. doi: 10.7498/aps.71.20211443
    [4] Luo Zhong-Bing,  Dong Hui-Jun,  Ma Zhi-Yuan,  Zou Long-Jiang,  Zhu Xiao-Lei,  Lin Li. Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel. Acta Physica Sinica, 2018, 67(23): 238102. doi: 10.7498/aps.67.20181251
    [5] Guo Ge-Pu, Su Hui-Dan, Ding He-Ping, Ma Qing-Yu. Noninvasive temperature monitoring for high intensity focused ultrasound therapy based on electrical impedance tomography. Acta Physica Sinica, 2017, 66(16): 164301. doi: 10.7498/aps.66.164301
    [6] Xiong Zhi-Cheng, Zhu Li-Lin, Liu Cheng, Gao Shu-Mei, Zhu Jian-Qiang. High-intensity directional surface plasmonic excitation based on the multi metallic slits with nano-antenna. Acta Physica Sinica, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [7] Zheng Hui, Zhang Chong-Hong, Chen Bo, Yang Yi-Tao, Lai Xin-Chun. Inhibition effect of low-temperature pre-irradiation of helium ions on the growth of helium bubble in stainless steel:a Monte Carlo simulation. Acta Physica Sinica, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [8] Liu Shen-Ye, Huang Yi-Xiang, Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Li Jun, Yi Rong-Qing, Du Hua-Bing, Ding Yong-Kun. Experimental research on X-ray radiation and ablation of an Ag foil targets irradiated by high intensity 2ω0 laser light beam. Acta Physica Sinica, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [9] Sun Jian-Ming, Yu Jie, Guo Xia-Sheng, Zhang Dong. Study of nonlinear acoustic field of high intensity focused ultrasound by the fractional wave. Acta Physica Sinica, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [10] Xu Feng, Lu Ming-Zhu, Wan Ming-Xi, Fang Fei. System errors of a 256-element high intensity focused ultrasound phased array and precise control of multi-focus patterns. Acta Physica Sinica, 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
    [11] Liu Jun, Chen Xiao-Wei, Liu Jian-Sheng, Leng Yu-Xin, Zhu Yi, Dai Jun, Li Ru-Xin, Xu Zhi-Zhan. Properties of the propagation of negatively chirped femtosecond pulses in normally dispersive media. Acta Physica Sinica, 2006, 55(4): 1821-1826. doi: 10.7498/aps.55.1821
    [12] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. NIP a-Si:H solar cells on stanless steel with p-type nc-Si:H window layer. Acta Physica Sinica, 2005, 54(6): 2945-2949. doi: 10.7498/aps.54.2945
    [13] Chen Xiao-Wei, Liu Jun, Zhu Yi, Leng Yu-Xin, Ge Xiao-Chun, Li Ru-Xin, Xu Zhi-Zhan. Self-compression of high-intensity femtosecond laser pulses in air. Acta Physica Sinica, 2005, 54(8): 3665-3669. doi: 10.7498/aps.54.3665
    [14] Lu Ming-Zhu, Wan Ming-Xi, Shi Yu, Song Yan-Chun. . Acta Physica Sinica, 2002, 51(4): 928-934. doi: 10.7498/aps.51.928
    [15] WEI XUE-QIN, ZHENG QI-GUANG, GU JIAN-HUI, LI ZAI-GUANG. ABNORMAL TEMPERATURE FLUCTUATION OF STAINLESS STEEL IRRADIATED BY CW CO2 LASER. Acta Physica Sinica, 1999, 48(12): 2246-2251. doi: 10.7498/aps.48.2246
    [16] LI YU-PU, WANG PEI-XUAN, ZHANG GUO-GUANG, MA RU-ZHANG, LIU JIA-RUI, ZHU PEI-RAN, QIU CHANG-QING. A STUDY OF He TRAPPING AND RELEASE IN THE HR-1 STAINLESS STEEL. Acta Physica Sinica, 1989, 38(7): 1122-1126. doi: 10.7498/aps.38.1122
    [17] XU ZHENG-YI, ZHANG AN-DONG, XU GANG, YANG HUA-GUANG, LI YIN-YUAN. QUASI-ELASTIC STRONG LIGHT SCATTERING IN α-LiIO3 SINGLE CRYSTALS INDUCED BY IONIC TRANSPORTATION. Acta Physica Sinica, 1982, 31(5): 615-622. doi: 10.7498/aps.31.615
    [18] CAI QI-KONG, ZHU JING, HE CONG-ZHI. AGING STRUCTURE OF MARAGING STEEL. Acta Physica Sinica, 1974, 23(3): 26-41. doi: 10.7498/aps.23.26
    [19] Y. L. MA, T. S. KE. INTERNAL FRICTION PEAKS ASSOCIATED WITH THE COHERENCY OF THE DECOMPOSITION PRODUCTS OF HIGH-CARBON AND LOW-CARBON MARTENSITE. Acta Physica Sinica, 1964, 20(1): 72-82. doi: 10.7498/aps.20.72
    [20] CHUANG Yü-CHIH, LI YO-KO. THE FORMATION OF σ-PHASE IN A MODIFIED 18/8 STAINLESS STEEL. Acta Physica Sinica, 1954, 10(4): 321-332. doi: 10.7498/aps.10.321
Metrics
  • Abstract views:  696
  • PDF Downloads:  27
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2024
  • Accepted Date:  28 December 2024
  • Available Online:  08 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回