Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Uncertainty analysis of detonation based on probability learning on manifold

LIANG Xiao WANG Yanjin WANG Ruili

Citation:

Uncertainty analysis of detonation based on probability learning on manifold

LIANG Xiao, WANG Yanjin, WANG Ruili
cstr: 32037.14.aps.74.20241501
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Detonation test is affected by small experimental datasets due to high risk of implementation and the huge cost of sample production and measurement. The major challenges of limited data consist in constructing the probability distribution of physical quantities and application of machine learning. Probability learning on manifold (PLoM) can generate a large number of implementations that are consistent with practical common knowledge, while preserving potential physical mechanism these generated samples. So PLoM is viewed as an efficient tool of tackling small samples. To begin with, experimental data are assumed to be concentrated on an unknown subset of Euclidean space and can be treated as the sampling of random vector to be determined. Meanwhile, experimental problem is solved in the framework of matrix and the scaling transformation is conducted on the datasets of PBX9502 with multi-physics attributes. Then the principal component analysis is utilized to normalize the scaling matrix, and the normalization matrix is labeled as training sets. Moreover, the altered multi-dimensional Gaussian kernel density estimation is utilized for estimating the probability distribution of training set. Furthermore, diffusion map is used to discover and characterize the geometry and structure of dataset. In other words, nonlinear manifold based on the training set is constructed through diffusion map. Specifically, the first eigenvalue and corresponding eigenvector is related to the construction of diffusion basis and diffusion maps. Further, Itô-MCMC sampler is associated with dissipative Hamilton system driven by Wiener process, for which the initial condition is set to be training set, and prior probability is conceived as invariant measure. Störmer-Verlet scheme is used for solving the stochastic dissipative Hamilton equations. Finally, additional realizations of learning dataset are fulfilled through the inversion transformation. The result shows that random number generated from PLoM satisfies the requirements of industrial and high fidelity simulation. The 95% confidence interval of density is included in the range calibrated by Los Alamos National Laboratory. And the value of detonation velocity calibrated by Prof. Chengwei Sun [Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press) p224] also falls into 95% confidence interval of detonation velocity generated by PLoM. It is also deduced from the learning set that density and detonation velocity satisfies the affine transformation. Furthermore, detonation pressure has nonlinear relationship with density. Tiny variation of density can lead to magnificent fluctuation of detonation pressure and detonation velocity. Detonation pressure has the largest discreetness in all the physical quantities through the comparison of variation coefficients of learning set, which coincides with the existing research results. The method used is universal enough and can be extended to other detonation systems.
      Corresponding author: LIANG Xiao, mathlx@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12171047), the National Natural Science Foundation of China - China Academy of Engineering Physics Joint Fund for NSAF (Grant No. U2230208), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021BA056), and China Scholarship Council (Grant No. CSC202308370209).
    [1]

    孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社)

    Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press

    [2]

    Mader C 1979 Numerical Modeling of Detonations (Berkeley: University of California

    [3]

    梁霄, 王瑞利, 胡星志, 陈江涛 2023 爆炸与冲击 43 71Google Scholar

    Liang X, Wang R L, Hu Z X, Chen J T 2023 Explos. Shock. Waves. 43 71Google Scholar

    [4]

    梁霄, 王瑞利 2024 兵工学报 45 1673Google Scholar

    Liang X, Wang R L 2024 Acta. Arma. 45 1673Google Scholar

    [5]

    Liang X, Wang R L 2020 Int. J. Uncertainty. Quantif. 10 83Google Scholar

    [6]

    Bratton R N, Avramova M, Ivanov K 2014 Nucl. Eng. Technol. 46 313Google Scholar

    [7]

    Cartwright K, Pointon T, Oliver B V, Swanekamp S B, Hinshelwood D, Angus J R, Richardson A S, Mosher D 2016 Direct Electron-beam-injection Experiments for Validation of Air-chemistry Models (New Mexico: Sandia National Laboratories) SAND2016-2437C

    [8]

    Los Alamos National Laboratory 2022 Advanced Simulation and Computing Simulation Strategy Report LA-UR-22-25074

    [9]

    胡泽华, 叶涛, 刘雄国, 王佳 2017 物理学报 66 012801Google Scholar

    Hu Z H, Ye T, Liu X G, Wang J 2017 Acta. Phys. Sin. 66 012801Google Scholar

    [10]

    AIAA 1998 Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998

    [11]

    Clark M A, Kearns K, Overholt J L, Gross K H, Barthelemy B, Reed C 2014 Air Force Research Laboratory Test and Evaluation, Verification and Validation of Autonomous Systems Challenge Exploration Final Report Case Number 88ABW-2014-4063

    [12]

    Hu X Z, Duan Y H, Wang R L, Liang X, Chen J T 2019 J. Verif. Valid. Uncert. 4 021006Google Scholar

    [13]

    张诗琪, 杨化通 2023 物理学报 72 110303Google Scholar

    Zhang S Q, Yang H T 2023 Acta. Phys. Sin. 72 110303Google Scholar

    [14]

    Wishart J, Como S, Forgione U, Weast J, Weston L, Smart A, Nicols G, Ramesh S 2020 SAE Int. J. CAV 3 267Google Scholar

    [15]

    Department of Energy’s NNSA 2005 Holistic, Hierarchical VVUQ as the Scientific Method for PSAAP Report LA-UR-23-32192

    [16]

    Department of Defense 2019 Modeling and Simulation (M&S) Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide (RPG) Core Document: Introduction

    [17]

    Dahm W 2010 Technology Horizons a Vision for Air Force Science & Technology During 2010-2030 Report AF/ST-TR-10-01-PR

    [18]

    Balci O 1994 Ann. Oper. Res. 53 121Google Scholar

    [19]

    Metzger E J, Barton N P, Smedstad O M, Ruston B C, Wallcraft A J, Whitcomb T R, Ridout J A, Franklin D S, Zamudio L, Posey P G, Reynolds C A, Phelps M 2016 Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled data Assimilation American Geophysical Union A41G-0130

    [20]

    American Society of Mechanical Engineers 2022 Verification, Validation, and Uncertainty Quantification Terminology in Computational Modeling and Simulation ASME VVUQ 1-2022

    [21]

    Oberkampf W, Roy C 2010 Verification and Validation in Scientific Computing (Cambridge: Cambridge University Press

    [22]

    Liang X, Wang R L 2019 Def. Technol. 15 398Google Scholar

    [23]

    王言金, 张树道, 李华, 周海兵 2016 物理学报 65 106401Google Scholar

    Wang Y J, Zhang S D, Li H, Zhou H B 2016 Acta. Phys. Sin. 65 106401Google Scholar

    [24]

    Park C, Nili S, Mathew J T, Ouellet F, Koneru R, Kim N, Balachandar S, Haftka R 2021 J. Verif. Valid. Uncert. 6 119007Google Scholar

    [25]

    梁霄, 王瑞利 2017 物理学报 66 116401Google Scholar

    Liang X, Wang R L 2017 Acta. Phys. Sin. 66 116401Google Scholar

    [26]

    Soize C, Ghanem R 2016 J. Comput. Phys. 321 242Google Scholar

    [27]

    Ghanem R, Soize C, Safta C, Huan X, Lacaze G, Oefelein J C, Najm H N 2019 J. Comput. Phys. 399 108930Google Scholar

    [28]

    Capiez-Lernout E, Ezvan O, Soize C 2024 J. Comput. Inf. Sci. Eng. 24 061006Google Scholar

    [29]

    Nespoulous J, Perrin G, Funfschilling C, Soize C 2024 Physics D 457 133977Google Scholar

    [30]

    Capiez-Lernout E, Soize C 2022 Int. J. Non. Linear. Mech. 143 104023Google Scholar

    [31]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335Google Scholar

    [32]

    Hastings W 1970 Biometrika 109 57Google Scholar

    [33]

    Geman S, Geman D 1984 IEEE Trans. Pattern. Anal. Mach. Intell. 6 721Google Scholar

    [34]

    Campbell A 1984 Pyrotechnics 9 183Google Scholar

    [35]

    Peterson P, Idar D 2005 Propell. Explos. Pyrot. 30 88Google Scholar

    [36]

    Davis W C, Hill L G 2002 12th International Symposium Detonation San Diego, USA, August 11–16, 2002 p220

    [37]

    Handley C, Lambourn B, Whitworth N, James H, Belfield W 2018 Appl. Phys. Rev. 5 011303Google Scholar

    [38]

    Coifman R, Lafon S, Lee A, Maggioni M, Nadler B, Warner F 2005 Proc. Natl. Acad. Sci. USA 102 7426Google Scholar

    [39]

    Hairer E, Lubich C, Wanner G 2002 Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations (Heidelberg: Springer-Verlag

    [40]

    Soize C 2008 Int. J. Numer. Methods Eng. 76 1583Google Scholar

    [41]

    Shannon C 1948 Bell. Syst. Tech. J. 27 623Google Scholar

    [42]

    Gustavsen R, Sheffield S, Alcon R 2006 J. Appl. Phys. 99 114907Google Scholar

  • 图 1  PBX9502炸药密度和爆速图

    Figure 1.  Scatter plot of density and detonation velocity of explosive PBX 9502.

    图 2  PBX 9502的偏光显微镜图[35]

    Figure 2.  Polarizing light microscope images of PBX-9502[35].

    图 3  缩比矩阵C特征值

    Figure 3.  Eigenvalues of scaling matrix C.

    图 4  实验数据导出的训练集${{\boldsymbol{\eta}} _{\text{d}}}$

    Figure 4.  Training set ${{\boldsymbol{\eta}} _{\text{d}}}$ deduced from experimental data.

    图 5  log10尺度下的转移矩阵的特征值递减分布图

    Figure 5.  Descending plot of eigenvalues of transition matrix under log10 scale.

    图 6  PLoM生成的4000个样本的学习集

    Figure 6.  The 4000 additional samples of learning set generated from PLoM.

    图 7  PLoM生成的4000个样本

    Figure 7.  The 4000 additional samples generated from PLoM.

    图 8  PLoM生成的4000个电子实验数据

    Figure 8.  The 4000 samples of digital experimental data generated from PLoM.

    图 9  流形上概率学习方法的流程图

    Figure 9.  Flow chart of PLoM.

    图 10  基于圆柱螺旋曲线的PLoM方法验证图 (a)原始数据; (b)生成数据

    Figure 10.  Verification of PLoM methodology based on cylindrical helix curve: (a) Original samples; (b) generating data.

    图 11  基于圆锥螺旋曲线的PLoM方法验证图 (a)原始数据; (b)生成数据

    Figure 11.  Verification of PLoM methodology based on cone helix curve: (a) Original samples; (b) generating data.

    图 12  PBX-9502密度和爆速的概率密度函数 (a)密度; (b)爆速

    Figure 12.  PDF of detonation velocity of PBX-9502: (a) Density; (b) detonation velocity.

    图 13  QoI的概率密度函数 (a)密度; (b)爆速

    Figure 13.  Probability density function of QoI: (a) Density; (b) detonation velocity.

    图 14  密度和爆速的曲线拟合图

    Figure 14.  Curve fitting between density and detonation velocity.

    图 15  爆压的概率密度函数

    Figure 15.  PDF of detonation pressure.

  • [1]

    孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社)

    Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press

    [2]

    Mader C 1979 Numerical Modeling of Detonations (Berkeley: University of California

    [3]

    梁霄, 王瑞利, 胡星志, 陈江涛 2023 爆炸与冲击 43 71Google Scholar

    Liang X, Wang R L, Hu Z X, Chen J T 2023 Explos. Shock. Waves. 43 71Google Scholar

    [4]

    梁霄, 王瑞利 2024 兵工学报 45 1673Google Scholar

    Liang X, Wang R L 2024 Acta. Arma. 45 1673Google Scholar

    [5]

    Liang X, Wang R L 2020 Int. J. Uncertainty. Quantif. 10 83Google Scholar

    [6]

    Bratton R N, Avramova M, Ivanov K 2014 Nucl. Eng. Technol. 46 313Google Scholar

    [7]

    Cartwright K, Pointon T, Oliver B V, Swanekamp S B, Hinshelwood D, Angus J R, Richardson A S, Mosher D 2016 Direct Electron-beam-injection Experiments for Validation of Air-chemistry Models (New Mexico: Sandia National Laboratories) SAND2016-2437C

    [8]

    Los Alamos National Laboratory 2022 Advanced Simulation and Computing Simulation Strategy Report LA-UR-22-25074

    [9]

    胡泽华, 叶涛, 刘雄国, 王佳 2017 物理学报 66 012801Google Scholar

    Hu Z H, Ye T, Liu X G, Wang J 2017 Acta. Phys. Sin. 66 012801Google Scholar

    [10]

    AIAA 1998 Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998

    [11]

    Clark M A, Kearns K, Overholt J L, Gross K H, Barthelemy B, Reed C 2014 Air Force Research Laboratory Test and Evaluation, Verification and Validation of Autonomous Systems Challenge Exploration Final Report Case Number 88ABW-2014-4063

    [12]

    Hu X Z, Duan Y H, Wang R L, Liang X, Chen J T 2019 J. Verif. Valid. Uncert. 4 021006Google Scholar

    [13]

    张诗琪, 杨化通 2023 物理学报 72 110303Google Scholar

    Zhang S Q, Yang H T 2023 Acta. Phys. Sin. 72 110303Google Scholar

    [14]

    Wishart J, Como S, Forgione U, Weast J, Weston L, Smart A, Nicols G, Ramesh S 2020 SAE Int. J. CAV 3 267Google Scholar

    [15]

    Department of Energy’s NNSA 2005 Holistic, Hierarchical VVUQ as the Scientific Method for PSAAP Report LA-UR-23-32192

    [16]

    Department of Defense 2019 Modeling and Simulation (M&S) Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide (RPG) Core Document: Introduction

    [17]

    Dahm W 2010 Technology Horizons a Vision for Air Force Science & Technology During 2010-2030 Report AF/ST-TR-10-01-PR

    [18]

    Balci O 1994 Ann. Oper. Res. 53 121Google Scholar

    [19]

    Metzger E J, Barton N P, Smedstad O M, Ruston B C, Wallcraft A J, Whitcomb T R, Ridout J A, Franklin D S, Zamudio L, Posey P G, Reynolds C A, Phelps M 2016 Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled data Assimilation American Geophysical Union A41G-0130

    [20]

    American Society of Mechanical Engineers 2022 Verification, Validation, and Uncertainty Quantification Terminology in Computational Modeling and Simulation ASME VVUQ 1-2022

    [21]

    Oberkampf W, Roy C 2010 Verification and Validation in Scientific Computing (Cambridge: Cambridge University Press

    [22]

    Liang X, Wang R L 2019 Def. Technol. 15 398Google Scholar

    [23]

    王言金, 张树道, 李华, 周海兵 2016 物理学报 65 106401Google Scholar

    Wang Y J, Zhang S D, Li H, Zhou H B 2016 Acta. Phys. Sin. 65 106401Google Scholar

    [24]

    Park C, Nili S, Mathew J T, Ouellet F, Koneru R, Kim N, Balachandar S, Haftka R 2021 J. Verif. Valid. Uncert. 6 119007Google Scholar

    [25]

    梁霄, 王瑞利 2017 物理学报 66 116401Google Scholar

    Liang X, Wang R L 2017 Acta. Phys. Sin. 66 116401Google Scholar

    [26]

    Soize C, Ghanem R 2016 J. Comput. Phys. 321 242Google Scholar

    [27]

    Ghanem R, Soize C, Safta C, Huan X, Lacaze G, Oefelein J C, Najm H N 2019 J. Comput. Phys. 399 108930Google Scholar

    [28]

    Capiez-Lernout E, Ezvan O, Soize C 2024 J. Comput. Inf. Sci. Eng. 24 061006Google Scholar

    [29]

    Nespoulous J, Perrin G, Funfschilling C, Soize C 2024 Physics D 457 133977Google Scholar

    [30]

    Capiez-Lernout E, Soize C 2022 Int. J. Non. Linear. Mech. 143 104023Google Scholar

    [31]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335Google Scholar

    [32]

    Hastings W 1970 Biometrika 109 57Google Scholar

    [33]

    Geman S, Geman D 1984 IEEE Trans. Pattern. Anal. Mach. Intell. 6 721Google Scholar

    [34]

    Campbell A 1984 Pyrotechnics 9 183Google Scholar

    [35]

    Peterson P, Idar D 2005 Propell. Explos. Pyrot. 30 88Google Scholar

    [36]

    Davis W C, Hill L G 2002 12th International Symposium Detonation San Diego, USA, August 11–16, 2002 p220

    [37]

    Handley C, Lambourn B, Whitworth N, James H, Belfield W 2018 Appl. Phys. Rev. 5 011303Google Scholar

    [38]

    Coifman R, Lafon S, Lee A, Maggioni M, Nadler B, Warner F 2005 Proc. Natl. Acad. Sci. USA 102 7426Google Scholar

    [39]

    Hairer E, Lubich C, Wanner G 2002 Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations (Heidelberg: Springer-Verlag

    [40]

    Soize C 2008 Int. J. Numer. Methods Eng. 76 1583Google Scholar

    [41]

    Shannon C 1948 Bell. Syst. Tech. J. 27 623Google Scholar

    [42]

    Gustavsen R, Sheffield S, Alcon R 2006 J. Appl. Phys. 99 114907Google Scholar

  • [1] Chen Heng-Jie, Xue Hang, Li Shao-Xiong, Wang Zhen. A method of determining microwave dissipation of Josephson junctions with non-linear frequency response. Acta Physica Sinica, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [2] Li Ning, Lü Xiao-Jing, Jing Weng. Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm. Acta Physica Sinica, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [3] Yin Jian-Wei, Pan Hao, Wu Zi-Hui, Hao Peng-Cheng, Duan Zhuo-Ping, Hu Xiao-Mian. Stability analysis of interfacial Richtmyer-Meshkov flow of explosion-driven copper interface. Acta Physica Sinica, 2017, 66(20): 204701. doi: 10.7498/aps.66.204701
    [4] Liang Xiao, Wang Rui-Li. Sensitivity analysis and validation of detonation computational fluid dynamics model. Acta Physica Sinica, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
    [5] Hu Ze-Hua, Ye Tao, Liu Xiong-Guo, Wang Jia. Uncertainty quantification in the calculation of keff using sensitity and stochastic sampling method. Acta Physica Sinica, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [6] Wang Yan-Jin, Zhang Shu-Dao, Li Hua, Zhou Hai-Bing. Uncertain parameters of Jones-Wilkin-Lee equation of state for detonation products of explosive. Acta Physica Sinica, 2016, 65(10): 106401. doi: 10.7498/aps.65.106401
    [7] Yu Ming, Sun Yu-Tao, Liu Quan. Analysis on refraction of detonation wave at the explosive-metal interface. Acta Physica Sinica, 2015, 64(11): 114702. doi: 10.7498/aps.64.114702
    [8] Liu Jun, Fu Zheng, Feng Qi-Jing, Wang Pei. Simulation study of the colliding bulge and surface micro-jet of metal flyers driven by detonation. Acta Physica Sinica, 2015, 64(23): 234701. doi: 10.7498/aps.64.234701
    [9] Zhou Hong-Qiang, Yu Ming, Sun Hai-Quan, Dong He-Fei, Zhang Feng-Guo. A continuum constitutive model and computational method of explosive detonation. Acta Physica Sinica, 2014, 63(22): 224702. doi: 10.7498/aps.63.224702
    [10] Liu Yu, Zhou Jin, Lin Zhi-Yong. Ramp-induced oblique detonation wave with an incoming boudary layer effect. Acta Physica Sinica, 2014, 63(20): 204701. doi: 10.7498/aps.63.204701
    [11] Qu Yan-Dong, Kong Xiang-Qing, Li Xiao-Jie, Yan Hong-Hao. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles. Acta Physica Sinica, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [12] Yan Liang, Chen Ke-An, Ruedi Stoop. Study on measuring the exposure of sound samples in subjective experiments. Acta Physica Sinica, 2013, 62(12): 124302. doi: 10.7498/aps.62.124302
    [13] Chen Yong-Tao, Ren Guo-Wu, Tang Tie-Gang, Hu Hai-Bo. Experimental diagnostic of melting fragments under explosive loading. Acta Physica Sinica, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [14] Zhao Yan-Hong, Liu Hai-Feng, Zhang Qi-Li. Unlike-pair interactions of detonation products at high pressure and high temperature. Acta Physica Sinica, 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [15] Zhao Yan-Hong, Liu Hai-Feng, Zhang Gong-Mu, Zhang Guang-Cai. Pair interactions of detonation products at high pressure and high temperature. Acta Physica Sinica, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [16] Ding Guang-Tao. A new approach to the construction of Lagrangians and Hamiltonians for one-dimensional dissipative systems with variable coefficients. Acta Physica Sinica, 2011, 60(4): 044503. doi: 10.7498/aps.60.044503
    [17] Zhao Yan-Hong, Liu Hai-Feng, Zhang Gong-Mu. Equation of state of detonation products based on statistical mechanical theory. Acta Physica Sinica, 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [18] Wen Chao, Sun De-Yu, Li Xun, Guan Jin-Qing, Liu Xiao-Xin, Lin Ying-Rui, Tang Shi-Ying, Zhou Gang, Lin Jun-De, Jin Zhi-Hao. Nano-graphite synthesized by explosive detonation and its application in preparing diamond under high-pressure and high-temperature. Acta Physica Sinica, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [19] Wen Chao, Jin Zhi-Hao, Li Xun, Sun De-Yu, Guan Jin-Qing, Liu Xiao-Xin, Lin Ying-Rui, Tang Shi-Ying, Zhou Gang, Lin Jun-De. Experimental study on the hydrogen storage and release in nano-graphite synthesized by explosive detonation. Acta Physica Sinica, 2004, 53(7): 2384-2388. doi: 10.7498/aps.53.2384
    [20] CHUANG FENG-KAN. ON THE DECAY OF TURBULENCE. Acta Physica Sinica, 1953, 9(3): 201-214. doi: 10.7498/aps.9.201
Metrics
  • Abstract views:  307
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2024
  • Accepted Date:  07 April 2025
  • Available Online:  24 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回