搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆轰波在炸药-金属界面上的折射分析

于明 孙宇涛 刘全

引用本文:
Citation:

爆轰波在炸药-金属界面上的折射分析

于明, 孙宇涛, 刘全

Analysis on refraction of detonation wave at the explosive-metal interface

Yu Ming, Sun Yu-Tao, Liu Quan
PDF
导出引用
  • 针对爆轰波在炸药-金属界面上折射时由实验获得的金属折射冲击波压力与经典爆轰波极曲线理论预测的压力存在显著差异这一问题, 本文展开了进一步的理论和数值模拟分析研究. 首先通过分析指出经典爆轰波极曲线理论的缺陷, 并对爆轰波极曲线理论进行了改进, 改进爆轰波极曲线理论给出了炸药爆轰波折射类型以及折射冲击作用点处的压力值. 然后发展了一个基于次特征理论来数值求解爆轰反应流动控制方程的二阶中心型Lagrange方法, 并数值模拟了一个典型的炸药爆轰波折射实验. 改进爆轰波极曲线理论和数值模拟分析结果表明, 爆轰波折射类型有三种:反射冲击波的正规折射、带Mach反射的非正规折射、无反射波的正规折射, 并且金属折射冲击波压力值随入射角增大而单调减小.
    This paper analyzes theoretically and numerically the refraction phenomenon of detonation wave at the explosive-metal interface, motivated by the problem that there exist large discrepancies between the experimental results and the classical shock polar theory. After pointing out the major defects of the classical shock polar theory based on CJ model of detonation, an improved shock polar theory based on ZND model of detonation is presented to give the styles of the refraction of detonation wave and the pressure values at the interaction point between the refracted shock wave and the incident shock wave, to show the pressure values at free-surface of copper remarkably lower than the ones at the shock interaction point due to the attenuation effects from the chemical reaction expansion and the following Taylor rarefaction. A second-order cell-centered Lagrangian hydrodynamics method with high resolution based on the subcharacteristics theory is develped to solve the reactive flow equations of detonation in condensed explosive, and then to numerically simulate a representative refraction experiment about T2 explosive interacting with copper. The simulated pressure values at the interaction point agree well with the ones from the improved shock polar theory, and the simulated pressure values at free-surface of copper agree well with the experimental values, meanwhile, the refraction styles predicted by the improved shock polar theory are confirmed by the numerically simulated flowfield images. From the theoretical and numerical results, there exist three kinds of refraction styles of detonation waves at explosive-metal interface:i) the regular refraction with reflecting shock wave, ii) the irregular refraction with Mach reflection, and iii) the regular refraction without any reflecting wave; in particular, the regular refraction with no reflecting wave is a kind of refraction style unable to be predicted by the classical shock polar theory, meanwhile, the pressure values at the free-surface and the interaction point inside the shocked metal both monotonically decrease with the increase of the incident angle.
    • 基金项目: 国家自然科学基金(批准号:11272064)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11272064).
    [1]

    Sternberg H M, Piacesi D 1966 J. Phys. Fluids 9 1307

    [2]

    Wang J H 1982 Explosion and Shock Wave 2 1 (in Chinese) [王继海 1982 爆炸与冲击 2 1]

    [3]

    Cheret R, C. R. Acad. Sc. Paris, T. 303, Serie Ⅱ, No. 1, 1986

    [4]

    Walsh J M, Shock Waves in Condensed Matter, 1987, Elsevier Science Publisher B. V., 3

    [5]

    Aveille J 1989 9th Symposium (International) on Detonation, Portland, Oregon, 842-851

    [6]

    Tarver C M, McGuire E M 2002 12th Symposium (International) on Detonation, San Diego, California, 641-649

    [7]

    Zhao Y H, Liu H F 2007 Acta Phys. Sin. 56 4791 (in Chinese) [赵艳红, 刘海风 2007 物理学报 56 4791]

    [8]

    Sun Y T, Jia Z P, Yu M 2012 Chinese J. Comp. Phys. 29 45 (in Chinese) [孙宇涛, 贾祖朋, 于明 2012 计算物理 29 45]

    [9]

    Sun C W 2000 Applied Detonation Physics (Beijing:Defense Industry Press) (in Chinese) [孙承纬 2000 应用爆轰物理(北京:国防工业出版社]

    [10]

    Wilkins M L 1963 ADA395185, California University Livermore Radiation Laboratory

    [11]

    Zhang B P, Jiang C L 1992 Trans. Beijing Institute of Technology 1 26 (in Chinese) [张宝坪, 姜春兰 1992 北京理工大学学报 1 26]

    [12]

    Zhao F 2009 Physics 38 894 (in Chinese) [赵锋 2009 物理 38 894]

    [13]

    Yu M, Zhang W H 2014 Explosion and Shock Wave 34 300 (in Chinese) [于明, 张文宏 2014 爆炸与冲击 34 300]

  • [1]

    Sternberg H M, Piacesi D 1966 J. Phys. Fluids 9 1307

    [2]

    Wang J H 1982 Explosion and Shock Wave 2 1 (in Chinese) [王继海 1982 爆炸与冲击 2 1]

    [3]

    Cheret R, C. R. Acad. Sc. Paris, T. 303, Serie Ⅱ, No. 1, 1986

    [4]

    Walsh J M, Shock Waves in Condensed Matter, 1987, Elsevier Science Publisher B. V., 3

    [5]

    Aveille J 1989 9th Symposium (International) on Detonation, Portland, Oregon, 842-851

    [6]

    Tarver C M, McGuire E M 2002 12th Symposium (International) on Detonation, San Diego, California, 641-649

    [7]

    Zhao Y H, Liu H F 2007 Acta Phys. Sin. 56 4791 (in Chinese) [赵艳红, 刘海风 2007 物理学报 56 4791]

    [8]

    Sun Y T, Jia Z P, Yu M 2012 Chinese J. Comp. Phys. 29 45 (in Chinese) [孙宇涛, 贾祖朋, 于明 2012 计算物理 29 45]

    [9]

    Sun C W 2000 Applied Detonation Physics (Beijing:Defense Industry Press) (in Chinese) [孙承纬 2000 应用爆轰物理(北京:国防工业出版社]

    [10]

    Wilkins M L 1963 ADA395185, California University Livermore Radiation Laboratory

    [11]

    Zhang B P, Jiang C L 1992 Trans. Beijing Institute of Technology 1 26 (in Chinese) [张宝坪, 姜春兰 1992 北京理工大学学报 1 26]

    [12]

    Zhao F 2009 Physics 38 894 (in Chinese) [赵锋 2009 物理 38 894]

    [13]

    Yu M, Zhang W H 2014 Explosion and Shock Wave 34 300 (in Chinese) [于明, 张文宏 2014 爆炸与冲击 34 300]

  • [1] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [2] 魏万里, 翁春生, 武郁文, 郑权. 涡轮导向器对旋转爆轰波传播特性影响的实验研究. 物理学报, 2020, 69(6): 064703. doi: 10.7498/aps.69.20191547
    [3] 李诗尧, 于明. 固体炸药爆轰的一种考虑热学非平衡的反应流动模型. 物理学报, 2018, 67(21): 214704. doi: 10.7498/aps.67.20172501
    [4] 梁霄, 王瑞利. 爆轰流体力学模型敏感度分析与模型确认. 物理学报, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
    [5] 张卿, 武新军. 基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型. 物理学报, 2017, 66(3): 038102. doi: 10.7498/aps.66.038102
    [6] 陈大伟, 王裴, 孙海权, 蔚喜军. 爆轰波对碰驱动平面锡飞层的动力学及动载行为特征研究. 物理学报, 2016, 65(2): 024701. doi: 10.7498/aps.65.024701
    [7] 于明, 刘全. 凝聚炸药爆轰波在高声速材料界面上的折射现象分析. 物理学报, 2016, 65(2): 024702. doi: 10.7498/aps.65.024702
    [8] 刘彧, 周进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波. 物理学报, 2014, 63(20): 204701. doi: 10.7498/aps.63.204701
    [9] 周洪强, 于明, 孙海权, 董贺飞, 张凤国. 炸药爆轰的连续介质本构模型和数值计算方法. 物理学报, 2014, 63(22): 224702. doi: 10.7498/aps.63.224702
    [10] 孙杜娟, 胡以华, 顾有林, 王勇, 李乐. 微生物远红外波段复折射率测定及模型构建. 物理学报, 2013, 62(9): 094218. doi: 10.7498/aps.62.094218
    [11] 陈永涛, 任国武, 汤铁钢, 胡海波. 爆轰加载下金属样品的熔化破碎现象诊断. 物理学报, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [12] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究. 物理学报, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [13] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 在不同扩散系数下反应扩散平面波的折射. 物理学报, 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [14] 范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁. 基于反射与折射理论的电涡流检测探头阻抗解析模型. 物理学报, 2009, 58(9): 5950-5954. doi: 10.7498/aps.58.5950
    [15] 赵艳红, 刘海风, 张弓木. 基于统计物理的爆轰产物物态方程研究. 物理学报, 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [16] 许 婕, 陈理想, 郑国梁, 王红成, 佘卫龙. 双折射晶体中旋光效应的耦合波理论. 物理学报, 2007, 56(8): 4615-4621. doi: 10.7498/aps.56.4615
    [17] 冯 宇, 吴 健, 宋建平. 负折射指数物质中金属线对电磁波的影响. 物理学报, 2006, 55(6): 2794-2798. doi: 10.7498/aps.55.2794
    [18] 张德生, 董孝义, 张伟刚, 王 志. 用阶跃有效折射率模型研究光子晶体光纤色散特性. 物理学报, 2005, 54(3): 1235-1240. doi: 10.7498/aps.54.1235
    [19] 沈自才, 邵建达, 王英剑, 范正修. 磁控反应溅射法制备渐变折射率薄膜的模型分析. 物理学报, 2005, 54(10): 4842-4845. doi: 10.7498/aps.54.4842
    [20] 麦振洪, 周堂. 铌酸锶钠锂单晶折射率及透光曲线的测量. 物理学报, 1981, 30(9): 1259-1263. doi: 10.7498/aps.30.1259
计量
  • 文章访问数:  3282
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-11
  • 修回日期:  2014-11-30
  • 刊出日期:  2015-06-05

爆轰波在炸药-金属界面上的折射分析

  • 1. 计算物理重点实验室、北京应用物理与计算数学研究所, 北京 100094
    基金项目: 国家自然科学基金(批准号:11272064)资助的课题.

摘要: 针对爆轰波在炸药-金属界面上折射时由实验获得的金属折射冲击波压力与经典爆轰波极曲线理论预测的压力存在显著差异这一问题, 本文展开了进一步的理论和数值模拟分析研究. 首先通过分析指出经典爆轰波极曲线理论的缺陷, 并对爆轰波极曲线理论进行了改进, 改进爆轰波极曲线理论给出了炸药爆轰波折射类型以及折射冲击作用点处的压力值. 然后发展了一个基于次特征理论来数值求解爆轰反应流动控制方程的二阶中心型Lagrange方法, 并数值模拟了一个典型的炸药爆轰波折射实验. 改进爆轰波极曲线理论和数值模拟分析结果表明, 爆轰波折射类型有三种:反射冲击波的正规折射、带Mach反射的非正规折射、无反射波的正规折射, 并且金属折射冲击波压力值随入射角增大而单调减小.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回