搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体炸药爆轰的一种考虑热学非平衡的反应流动模型

李诗尧 于明

引用本文:
Citation:

固体炸药爆轰的一种考虑热学非平衡的反应流动模型

李诗尧, 于明

Thermal nonequilibrium detonation model of solid explosive

Li Shi-Yao, Yu Ming
PDF
导出引用
  • 基于固体炸药爆轰过程中化学反应混合区内的固相反应物与气相生成物处于力学平衡状态及热学非平衡状态的事实,提出一种考虑热学非平衡效应的反应流动模型来描述固体炸药的爆轰流动现象.该爆轰流动模型的主要特点是,在反应混合物Euler方程和固相反应物质量守恒方程的基础上,通过附加一套关于固相反应物的组分物理量的流动控制方程来表达固相反应物与气相生成物之间的热学非平衡效应.根据反应混合区内固相反应物与气相生成物这两种化学组分保持各自内能守恒的混合规则,并借助它们具有压力相等的性质以及满足体积分数总和为1的条件,推导获得的附加方程有:固相反应物的内能演化方程、体积分数演化方程及反应混合物的压力演化方程.这样,建立的爆轰模型包括:反应混合物的质量守恒方程、动量守恒方程、总能量守恒方程、压力演化方程,以及固相反应物的质量守恒方程、内能演化方程、体积分数演化方程.对所获得的爆轰模型方程组采用一个时空二阶精度的有限体积法进行数值求解,典型爆轰问题算例结果表明本文提出的固体炸药爆轰模型是合理的.
    A thermal nonequilibrium reactive flow model is proposed to deal with the detonation dynamics of solid explosive. For the detonation in solid explosive, the solid-phase reactant and gas-phase product in the chemically reactive mixture zone do not have molecular collisions as in the case of gaseous detonation, so the solid-phase reactant and gas-phase product can arrive at a mechanical equilibrium but cannot reach a thermal equilibrium when the detonation happens. The main properties of the present detonation model are as follows. The Euler equations for chemical mixture and the mass conservation equation for solid-phase reactant are used to express the chemically reactive flows in solid explosive detonation as a traditional way, and an additional set of governing equations of the species physical variables for solidphase reactant is derived to give an expression to the thermal nonequilibrium between the solid-phase reactant and gas-phase product. The chemical mixture within a control volume is defined as a collection of species which possess distinct internal energy or temperature, and the same pressure and velocity. For the explosive detonation, the species include solid-phase reactant and gas-phase product. Based on the mixing rule that every species can preserve the conservation of its internal energy in the reactive mixture zone, the evolution equation of internal energy for solid-phase reactant may be obtained, meanwhile, based on the property of mechanical equilibrium in the reactive mixture zone, the total volume fraction is equal to one, and the equation of state of every species, the evolution equation of volume fraction for solid-phase reactant and the evolution equation of pressure for chemical mixture can be derived. Thus, the theoretical model of solid explosive detonation includes the conservation equation of mass, momentum, total energy and the evolution equation of pressure for the chemical mixture, and the conservation equation of mass and the evolution equation of internal energy and volume fraction for the solid-phase reactant. The partially differential equations of the detonation model are numerically solved by a finite volume scheme with two-order spatiotemporal precision, through using a wave propagation algorithm by means of Strang splitting operator. The validation of the proposed detonation model is checked by the propagation of planar one-dimensional detonation, the propagation of cylindrically divergent detonation and the interaction between two cylindrically divergent detonations, and the typical examples demonstrate that the proposed theoretical model of solid explosive detonation is reasonable.
      通信作者: 于明, yu_ming@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11772066,11272064)、科学挑战专题(批准号:TZ2016002)和计算物理重点实验室基金(批准号:9140C690101150C69300)资助的课题.
      Corresponding author: Yu Ming, yu_ming@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772066, 11272064), the Science Challenge Project, China (Grant No. TZ2016002), and the Science Foundation of Computational Physics Laboratory, China (Grant No. 9140C690101150C69300).
    [1]

    Chapman D L 1899 Philos. Mag. 47 90

    [2]

    Jouguet E J 1905 de Math. Pures et Appl. 1 347

    [3]

    von Neumann J 1956 Theory of Detonation Waves in John von Neumann's Collected Works (New York: Macmilann) pp18-28

    [4]

    Zel'dovich Y B, Kompaneets A S 1960 Theory of Detonation (New York: Academic) pp234-245

    [5]

    Davis W C, Fickett W 1979 Detonation (Berkeley: University of California Press) pp23-29

    [6]

    Zhang F 2012 Detonation Dynamics, Shock Wave Science and Technology Reference Library (Vol. 6) (Berlin, Heidelberg: Springer) pp33-100

    [7]

    Lee J H S 2008 The Detonation Phenomenon (Cambridge: Cambridge University Press) pp43-48

    [8]

    Ershov A P, Satonkina N P, Ivanov G M 2006 Proceedings of the 13rd International Detonation Symposium Norfolk, USA, July 23-28, 2006 p79

    [9]

    Nichols Ⅲ A L 2005 Shock Compression of Condensed Matter-2005, AIP Conference Proceedings Baltimore, USA, July 31-August 5, 2005 p03113-1

    [10]

    Kay J J 2015 Shock Compression of Condensed Matter-2015, AIP Conference Proceedings Baltimore, USA, July 23-29, 2015 p03002-1

    [11]

    Harier D 2015 Modeling ‘Hot-Spot’ Contributions in Shocked High Explosives at the Mesoscale (Los Alamos: Los Alamos National Lab.) LA-UR-15-26389

    [12]

    Kapila A K, Menikoff R, Bdzil J B, Son S F, Stewart D S 2001 Phys. Fluids 13 3002

    [13]

    Petitpas F, Richard Saurel, Franquet E, Chinnayya A 2009 Shock Waves 19 377

    [14]

    Conley P A, Benson D J 1998 Proceedings of the 11th International Detonation Symposium Snowmass, CO, USA, July 15-20, 1998 p768

    [15]

    Baer M R, Kipp M E, van Swol F 1998 Proceedings of the 11th International Detonation Symposium Snowmass, CO, USA, July 15-20, 1998 p788

    [16]

    Nichols Ⅲ A L 2010 Proceedings of the 14th International Detonation Symposium Coeur d'Alane, USA, April 11-16, 2010 p1549

    [17]

    Tarasov M D, Karpenko I I, Sudovtsov V A, Tolshmyakov A I 2007 Combust. Explo. Shock Waves 43 465

    [18]

    Gerard B, Fabien P, Richard S 2010 Proceedings of the 14th International Detonation Symposium Coeur d'Alene Idaho, USA, April 11-16, 2010 p509

    [19]

    Tarver C M 2005 Shock Compression of Condensed Matter-2005, AIP Conference Proceedings Baltimore, USA, July 31-August 5, 2005 p03113-1

    [20]

    Ton V T 1996 J. Comp. Phys. 128 237

    [21]

    Schoch S, Nordin-Bates K, Nikiforakis N 2013 J. Comp. Phys. 252 163

    [22]

    Strang G 1968 SIAM J. Num. Anal. 5 506

    [23]

    Leveque R J 1997 J. Comp. Phys. 131 327

    [24]

    Zhong X L 1996 J. Comp. Phys. 128 19

    [25]

    Lee E F, Tarver C M 1980 Phys. Fluids 23 2362

    [26]

    Ralph M 2015 JWL Equation of State (Los Alamos: Los Alamos National Laboratory) LA-UR-15-29536

    [27]

    Mader C L 1998 Numerical Modeling of Explosives and Propellants (2nd Ed.) New York: CRC Press) pp271-272

  • [1]

    Chapman D L 1899 Philos. Mag. 47 90

    [2]

    Jouguet E J 1905 de Math. Pures et Appl. 1 347

    [3]

    von Neumann J 1956 Theory of Detonation Waves in John von Neumann's Collected Works (New York: Macmilann) pp18-28

    [4]

    Zel'dovich Y B, Kompaneets A S 1960 Theory of Detonation (New York: Academic) pp234-245

    [5]

    Davis W C, Fickett W 1979 Detonation (Berkeley: University of California Press) pp23-29

    [6]

    Zhang F 2012 Detonation Dynamics, Shock Wave Science and Technology Reference Library (Vol. 6) (Berlin, Heidelberg: Springer) pp33-100

    [7]

    Lee J H S 2008 The Detonation Phenomenon (Cambridge: Cambridge University Press) pp43-48

    [8]

    Ershov A P, Satonkina N P, Ivanov G M 2006 Proceedings of the 13rd International Detonation Symposium Norfolk, USA, July 23-28, 2006 p79

    [9]

    Nichols Ⅲ A L 2005 Shock Compression of Condensed Matter-2005, AIP Conference Proceedings Baltimore, USA, July 31-August 5, 2005 p03113-1

    [10]

    Kay J J 2015 Shock Compression of Condensed Matter-2015, AIP Conference Proceedings Baltimore, USA, July 23-29, 2015 p03002-1

    [11]

    Harier D 2015 Modeling ‘Hot-Spot’ Contributions in Shocked High Explosives at the Mesoscale (Los Alamos: Los Alamos National Lab.) LA-UR-15-26389

    [12]

    Kapila A K, Menikoff R, Bdzil J B, Son S F, Stewart D S 2001 Phys. Fluids 13 3002

    [13]

    Petitpas F, Richard Saurel, Franquet E, Chinnayya A 2009 Shock Waves 19 377

    [14]

    Conley P A, Benson D J 1998 Proceedings of the 11th International Detonation Symposium Snowmass, CO, USA, July 15-20, 1998 p768

    [15]

    Baer M R, Kipp M E, van Swol F 1998 Proceedings of the 11th International Detonation Symposium Snowmass, CO, USA, July 15-20, 1998 p788

    [16]

    Nichols Ⅲ A L 2010 Proceedings of the 14th International Detonation Symposium Coeur d'Alane, USA, April 11-16, 2010 p1549

    [17]

    Tarasov M D, Karpenko I I, Sudovtsov V A, Tolshmyakov A I 2007 Combust. Explo. Shock Waves 43 465

    [18]

    Gerard B, Fabien P, Richard S 2010 Proceedings of the 14th International Detonation Symposium Coeur d'Alene Idaho, USA, April 11-16, 2010 p509

    [19]

    Tarver C M 2005 Shock Compression of Condensed Matter-2005, AIP Conference Proceedings Baltimore, USA, July 31-August 5, 2005 p03113-1

    [20]

    Ton V T 1996 J. Comp. Phys. 128 237

    [21]

    Schoch S, Nordin-Bates K, Nikiforakis N 2013 J. Comp. Phys. 252 163

    [22]

    Strang G 1968 SIAM J. Num. Anal. 5 506

    [23]

    Leveque R J 1997 J. Comp. Phys. 131 327

    [24]

    Zhong X L 1996 J. Comp. Phys. 128 19

    [25]

    Lee E F, Tarver C M 1980 Phys. Fluids 23 2362

    [26]

    Ralph M 2015 JWL Equation of State (Los Alamos: Los Alamos National Laboratory) LA-UR-15-29536

    [27]

    Mader C L 1998 Numerical Modeling of Explosives and Propellants (2nd Ed.) New York: CRC Press) pp271-272

  • [1] 韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清. 一个快速模拟热稠密非平衡等离子体的碰撞辐射模型. 物理学报, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [2] 刘龙, 夏智勋, 黄利亚, 马立坤, 陈斌斌. 镁颗粒-空气混合物一维非稳态爆震波特性数值模拟研究. 物理学报, 2020, 69(19): 194701. doi: 10.7498/aps.69.20200549
    [3] 刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东. 镁颗粒-空气混合物一维稳态爆震波特性数值模拟. 物理学报, 2019, 68(24): 244701. doi: 10.7498/aps.68.20190974
    [4] 刘瑞芬, 惠治鑫, 熊科诏, 曾春华. 表面催化反应模型中关联噪声诱导非平衡相变. 物理学报, 2018, 67(16): 160501. doi: 10.7498/aps.67.20180250
    [5] 梁霄, 王瑞利. 爆轰流体力学模型敏感度分析与模型确认. 物理学报, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
    [6] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 胡晓棉. 爆轰加载下弹塑性固体Richtmyer-Meshkov流动的扰动增长规律. 物理学报, 2017, 66(7): 074701. doi: 10.7498/aps.66.074701
    [7] 于明, 刘全. 凝聚炸药爆轰波在高声速材料界面上的折射现象分析. 物理学报, 2016, 65(2): 024702. doi: 10.7498/aps.65.024702
    [8] 王言金, 张树道, 李华, 周海兵. 炸药爆轰产物Jones-Wilkins-Lee状态方程不确定参数. 物理学报, 2016, 65(10): 106401. doi: 10.7498/aps.65.106401
    [9] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算. 物理学报, 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [10] 赵继波, 孙承纬, 谷卓伟, 赵剑衡, 罗浩. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析. 物理学报, 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [11] 于明, 孙宇涛, 刘全. 爆轰波在炸药-金属界面上的折射分析. 物理学报, 2015, 64(11): 114702. doi: 10.7498/aps.64.114702
    [12] 周洪强, 于明, 孙海权, 董贺飞, 张凤国. 炸药爆轰的连续介质本构模型和数值计算方法. 物理学报, 2014, 63(22): 224702. doi: 10.7498/aps.63.224702
    [13] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征. 物理学报, 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [14] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型. 物理学报, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [15] 牟宗信, 李国卿, 车德良, 黄开玉, 柳 翠. 非平衡磁控溅射沉积系统伏安特性模型研究. 物理学报, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
    [16] 文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩. 炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用. 物理学报, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [17] 文 潮, 金志浩, 李 迅, 孙德玉, 关锦清, 刘晓新, 林英睿, 唐仕英, 周 刚, 林俊德. 炸药爆轰制备纳米石墨粉储放氢性能实验研究. 物理学报, 2004, 53(7): 2384-2388. doi: 10.7498/aps.53.2384
    [18] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在. 物理学报, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [19] 肖定全, 韦力凡, 李子森, 朱建国, 钱正洪, 彭文斌. 金属氧化物薄膜的多离子束反应共溅射模型(Ⅰ)——模型建立. 物理学报, 1996, 45(2): 330-338. doi: 10.7498/aps.45.330
    [20] 李富斌. 用细胞自动机方法构造非平衡相变模型. 物理学报, 1992, 41(11): 1837-1841. doi: 10.7498/aps.41.1837
计量
  • 文章访问数:  2060
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-21
  • 修回日期:  2018-08-20
  • 刊出日期:  2018-11-05

固体炸药爆轰的一种考虑热学非平衡的反应流动模型

  • 1. 中国工程物理研究院研究生院, 北京 100088;
  • 2. 北京应用物理与计算数学研究所, 北京 100094
  • 通信作者: 于明, yu_ming@iapcm.ac.cn
    基金项目: 国家自然科学基金(批准号:11772066,11272064)、科学挑战专题(批准号:TZ2016002)和计算物理重点实验室基金(批准号:9140C690101150C69300)资助的课题.

摘要: 基于固体炸药爆轰过程中化学反应混合区内的固相反应物与气相生成物处于力学平衡状态及热学非平衡状态的事实,提出一种考虑热学非平衡效应的反应流动模型来描述固体炸药的爆轰流动现象.该爆轰流动模型的主要特点是,在反应混合物Euler方程和固相反应物质量守恒方程的基础上,通过附加一套关于固相反应物的组分物理量的流动控制方程来表达固相反应物与气相生成物之间的热学非平衡效应.根据反应混合区内固相反应物与气相生成物这两种化学组分保持各自内能守恒的混合规则,并借助它们具有压力相等的性质以及满足体积分数总和为1的条件,推导获得的附加方程有:固相反应物的内能演化方程、体积分数演化方程及反应混合物的压力演化方程.这样,建立的爆轰模型包括:反应混合物的质量守恒方程、动量守恒方程、总能量守恒方程、压力演化方程,以及固相反应物的质量守恒方程、内能演化方程、体积分数演化方程.对所获得的爆轰模型方程组采用一个时空二阶精度的有限体积法进行数值求解,典型爆轰问题算例结果表明本文提出的固体炸药爆轰模型是合理的.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回