Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigating dissociation mechanism of ethane dication via three-body fragmentation

ZHANG Ziqi YAN Shuncheng TAO Chenyu YU Xuan ZHANG Shaofeng MA Xinwen

Citation:

Investigating dissociation mechanism of ethane dication via three-body fragmentation

ZHANG Ziqi, YAN Shuncheng, TAO Chenyu, YU Xuan, ZHANG Shaofeng, MA Xinwen
PDF
Get Citation
  • Molecular ions are widely distributed in the ionosphere of planetary atmospheres, and their fragmentations can generate different ions and neutral fragments. Studying the kinetic energy distribution and generation mechanism of the final products is helpful in understanding fundamental phenomena in astrophysics and plasma physics. In particular, ethane is an important molecule found in Titan and comet, its fragmentation may be involved in the generation of complex hydrocarbons, as well as the atmospheric escape processes on Titan.
    In this paper, we carried out the experiment on ethane fragmentation by electron impact, focusing on the three-body fragmentation channel from C2H62+ to CH3+/CH2+/H. We directly measured the three-dimensional momenta of CH3+ and CH2+ ions, and then reconstructed the momentum of the H atom using momentum conservation law. Based on these analyses, we investigated the kinetic energy release (KER) spectrum and the fragmentation mechanisms.
    In the TOF coincidence map of the ions, we observed two channels: channel (1) represents the two-body dissociation generating CH3+/CH3+, and channel (2) represents the three-body dissociation generating CH3+/CH2+/H, which is mentioned above. It is found that the neutral H from channel (2) has a wide kinetic energy distribution, ranging from 0 eV up to more than 10 eV. This feature indicates the dissociation of the C-H bond is from multiple electronic states. Since the escape threshold of H in Titan's ionosphere is 0.02 eV, the vast majority of the H atoms produced in channel (2) can escape into outer space. In addition, the kinetic energy sum of CH3+ and CH2+in channel (2) is found to be similar to the KER of channel (1), indicating that the C-H dissociation presents limited influence on the energy sum of the CH2+ and CH3+.
    The corresponding fragmentation mechanism of channel (2) was also analyzed in this paper. We divided the overall KER spectrum into three parts, 0-6 eV, 6-9 eV, and 9-11 eV, and reconstructed the respective Dalitz plots and Newton diagrams under different KER conditions. In all Dalitz plots, there is a bright spot representing the concerted dissociation and a horizontal belt representing the sequential dissociation. The concerted dissociation is concluded as the main mechanism, while the sequential dissociation plays a minor role.
    The bright spot in the Dalitz plot shifts from the center to the left as the KER increases. This feature arises from the following fact, the CH2+lies between the H and the CH3+ in the concerted dissociation, and it feels the recoil both from H and CH3+. Considering the Coulomb potential from CH3+ is constant, enhancing the C-H dissociation energy will decrease the CH2+ kinetic energy. The belt in the Dalitz suggests the sequential dissociation as a two-step process, the first step is the dissociation of C2H62+ to generate H and metastable C2H52+, and the second step is the fragmentation from C2H52+ to CH3+ and CH2+.
    We also reconstructed the Newton diagrams under different KER conditions to give further evidence of the sequential dissociation from the metastable C2H52+, rather than from the metastable CH3+orCH4+. Indeed, for the former case, the center positions of the two half circles in Newton diagrams appear correctly. Oppositely, for the latter two cases, the center positions notably deviate from the expected values. This means the sequential dissociation from C2H52+ is dominant, which agrees excellently with the conclusion from the Dalitz plots.
  • [1]

    Mathur D 2004Phys. Rep. 391 1

    [2]

    Adoui L, Muranaka T, Tarisien M, Legendre S, Laurent G, Cassimi A, Chesnel J Y, Fléchard X, Frémont F, Gervais B, Giglio E, Hennecart D 2006Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 245 94

    [3]

    Aitelhadjali Z, Kessal S, Quinto M A, Oubaziz D, Champion C 2016Int. J. Mass Spectrom. 403 53

    [4]

    Shen Z J, Wang E L, Gong M M, Shan X, Chen X J 2016J. Chem. Phys. 145 234303

    [5]

    Chen L, Wang E L, Shan X, Shen Z J, Zhao X, Chen X J 2021Phys. Rev. A 104 032814

    [6]

    Jiang T, Wang B, Zhang Y, Wei L, Chen S, Yu W, Zou Y, Chen L, Wei B 2019Phys. Rev. A 100 022705

    [7]

    Duley A, Kelkar A H 2023Atoms 11 75

    [8]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014Phys. Rev. A 90 062705

    [9]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014J. Chem. Phys. 140 124303

    [10]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018Phys. Rev. A 97 022703

    [11]

    Wei L, Chen S, Zhang Y, Wang B, Yu W, Ren B, Han J, Zou Y, Chen L, Wei B 2020Eur. Phys. J. D 74 133

    [12]

    Das N, De S, Bhatt P, Safvan C P, Majumdar A 2023J. Chem. Phys. 158 084307

    [13]

    Yuan H, Xu S, Wang E, Xu J, Gao Y, Zhu X, Guo D, Ma B, Zhao D, Zhang S, Yan S, Zhang R, Gao Y, Xu Z, Ma X 2022J. Phys. Chem. Lett. 13 7594

    [14]

    Wang Y, Li Y, Gao Y, Chen Y, Zhou Z, Shen X, Jin G 2024Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 557 165547

    [15]

    Abplanalp M J, Kaiser R I 2016Astrophys. J. 827 132

    [16]

    Kim Y S, Bennett C J, Chen L H, O'Brien K, Kaiser R I 2010Astrophys. J. 711 744

    [17]

    Russo N D, Vervack Jr R J, Weaver H A, Lisse C M 2009Icarus 200 271

    [18]

    Kanya R, Kudou T, Schirmel N, Miura S, Weitzel K M, Hoshina K, Yamanouchi K 2012J. Chem. Phys. 136 204309

    [19]

    Schirmel N, Reusch N, Horsch P, Weitzel K M 2013Faraday Discuss. 163 461

    [20]

    Boran Y, Gutsev G L, Kolomenskii A A, Zhu F, Schuessler A, Strohaber J 2018J. Phys. B-At. Mol. Opt. Phys. 51 035003

    [21]

    Zhang Y, Ren B, Yang C L, Wei L, Wang B, Han J, Yu W, Qi Y, Zou Y, Chen L, Wang E, Wei B 2020Comm. Chem. 3 160

    [22]

    Wei L, Lam C S, Zhang Y, Ren B, Han J, Wang B, Zou Y, Chen L, Lau K C, Wei B 2021J. Phys. Chem. Lett. 12 5789

    [23]

    Yoshida S, Majima T, Tsuchida H, Saito M 2020X-Ray Spectrom. 49 177

    [24]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 108 425

    [25]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000Phys. Rep. 330 95

    [26]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003Rep. Prog. Phys. 66 1463

    [27]

    Ullrich J, Schmidt-Böcking H 1987Phys. Lett. A 125 193

    [28]

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011Acta Phys. Sin. 60 113401(in Chinese) [郭大龙, 马新文, 冯文天, 张少锋, 朱小龙2011物理学报 60 113401]

    [29]

    Yan S, Zhu X L, Zhang S F, Zhao D M, Zhang P, Wei B, Ma X 2020Phys. Rev. A 102 032809

    [30]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018Phys. Rev. A 97 010701

    [31]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges, S 2014Lect. Notes Comput. Sci. LNCS 8579 554

  • [1] PENG Yi, WANG Chunjing, LI Jing, GAO Kaiyue, XU Hancheng, CHEN Chuanjie, QIAN Muyang, DONG Bingyan, WANG Dezhen. Numerical simulation on mechanism of plasma dissociation of carbon dioxide in atmospheric pressure packed-bed reactors. Acta Physica Sinica, doi: 10.7498/aps.74.20241241
    [2] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, doi: 10.7498/aps.70.20201685
    [3] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, doi: 10.7498/aps.69.20201035
    [4] Zhang Min, Yan Shun-Cheng, Gao Yong, Zhang Shao-Feng, Ma Xin-Wen. Methods of calibrating kinetic energy release in dissociation process of molecular dications. Acta Physica Sinica, doi: 10.7498/aps.69.20200901
    [5] Shen Li-Li, Yan Shun-Cheng, Ma Xin-Wen, Zhu Xiao-Long, Zhang Shao-Feng, Feng Wen-Tian, Zhang Peng-Ju, Guo Da-Long, Gao Yong, Hai Bang, Zhang Min, Zhao Dong-Mei. Three-body fragmentation dynamics of OCS3+ induced by intermediate energy Ne4+ ion impact. Acta Physica Sinica, doi: 10.7498/aps.67.20172163
    [6] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, doi: 10.7498/aps.67.20181468
    [7] Sun Qi-Xiang, Yan Bing. Computational study of two-body and three-body dissociation of CH3I2+. Acta Physica Sinica, doi: 10.7498/aps.66.093101
    [8] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, doi: 10.7498/aps.65.053302
    [9] Lin Kang, Gong Xiao-Chun, Song Qi-Ying, Ji Qin-Ying, Ma Jun-Yang, Zhang Wen-Bin, Lu Pei-Fen, Zeng He-Ping, Wu Jian. Directional bond breaking of CO molecules by counter-rotating circularly polarized two-color laser fields. Acta Physica Sinica, doi: 10.7498/aps.65.224209
    [10] Dai Li-Jiao, Li Hong-Yu. Generations of energetic deuterons and neutrons from the Coulomb explosion of deuterated ethane clusters. Acta Physica Sinica, doi: 10.7498/aps.63.243601
    [11] Guo Da-Long, Ma Xin-Wen, Feng Wen-Tian, Zhang Shao-Feng, Zhu Xiao-Long. Analysis of momentum and energy resolutions of the reaction microscope. Acta Physica Sinica, doi: 10.7498/aps.60.113401
    [12] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, doi: 10.7498/aps.60.093401
    [13] Chen Gao-Fei, Gong Mao-Qiong, Shen Jun, Zou Xin, Wu Jian-Feng. Two-phase frictional pressure drop of 1,1-difluoroethane in a horizontal tube. Acta Physica Sinica, doi: 10.7498/aps.59.8669
    [14] Cao Shi-Ping, Ma Xin-Wen, Dorn A., Dürr M., Ullrich J.. Correlation of emitted electrons in near threshold double ionization of helium by electron impact. Acta Physica Sinica, doi: 10.7498/aps.56.6386
    [15] Ma Jing, Ding Lei, Gu Xue-Jun, Fang Li, Zhang Wei-Jun, Wei Li-Xia, Wang Jing, Yang Bin, Huang Chao-Qun, Qi Fei. Vacuum ultraviolet photoionization and photodissociation of C2HCl3 by synchrotron radiation. Acta Physica Sinica, doi: 10.7498/aps.55.2708
    [16] Tang Bi-Feng, Xiong Ping-Fan, Zhang Xiu, Zhang Bing. Mass analyzed threshold ionization spectra of ethyl bromide. Acta Physica Sinica, doi: 10.7498/aps.55.4483
    [17] Yao Guan-Xin, Wang Xiao-Li, Du Chuan-Mei, Li Hui-Min, Zhang Xian-Yi, Zheng Xian-Feng, Ji Xue-Han, Cui Zhi-Feng. An experimental investigation on the resonance enhanced multiphoton ionization and dissociation processes of acetone. Acta Physica Sinica, doi: 10.7498/aps.55.2210
    [18] Zhang Xian-Ren, Shen Zhi-Gang, Chen Jian-Feng, Wang Wen-Chuan. Adsorption of linear ethane molecules in MCM-41 by molecular simulation. Acta Physica Sinica, doi: 10.7498/aps.52.163
    [19] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, doi: 10.7498/aps.51.235
    [20] WANG CHAO-YING, CHEN LI-QUAN, CHEN ZHU-SHENG, HE YUAN-KANG. STUDY OF ELECTRICAL PROPERTIES OF POLY (ETHLENE OXIDE )-NaSCN POLYMER IONIC CONDUCTOR. Acta Physica Sinica, doi: 10.7498/aps.33.854
Metrics
  • Abstract views:  168
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  24 January 2025

/

返回文章
返回