Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of monitoring image shift based on global fitting Doppler heterodyne interferometer

WEN Zhenqing LI Juan HAO Xiongbo CHANG Chenguang LI Hongbo ZUO Haopu FU Di FENG Yutao

Citation:

A method of monitoring image shift based on global fitting Doppler heterodyne interferometer

WEN Zhenqing, LI Juan, HAO Xiongbo, CHANG Chenguang, LI Hongbo, ZUO Haopu, FU Di, FENG Yutao
cstr: 32037.14.aps.74.20250027
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Accurate atmospheric wind field measurements are critical for understanding global climate dynamics and facilitating space exploration. Doppler asymmetric spatial heterodyne interferometer (DASH) is used to measure atmospheric wind speed through detecting the phase changes in interferograms induced by Doppler shifts of airglow emission lines. However, environmental temperature fluctuations and mechanical vibrations often cause imaging plane to shift, thereby introducing phase deviations, and degrading the measurement accuracy. In this study, a novel method of monitoring global fitting-based imaging shift is proposed. By etching periodic notches on the diffraction grating surface, the method models and fits the notch patterns formed on the detector plane to achieve precise imaging shift detection and correction. The optimization of notch signal modeling significantly reduces the number of fitting parameters, thus improving computational efficiency and detection precision. Through extensive simulations, the influences of signal-to-noise ratio (SNR) and model parameter variation on detection accuracy are analyzed. The results indicate that when the SNR exceeds 11, the detection uncertainty is still below 6.5 nm. Sensitivity analysis reveals that the detection error stays within acceptable limits when the variations of notch number and notch width are controlled within 40% and 0.7%, respectively, while the influence of edge smoothness parameter of notch pattern is negligible. To validate the performance of the method, the thermal stability is tested by using a near-infrared DASH prototype. The experimental results demonstrate a strong correlation between interferogram phase shifts, imaging plane shifts, and environmental temperature variations. After applying the proposed correction method, local phase fluctuations in the interferogram are significantly reduced, thus the phase stability is improved. Further, artificially applied imaging shifts are accurately detected with errors consistently below 9.96 nm, thereby confirming the reliability and precision of this method. All in all, the proposed method effectively detects and corrects the imaging plane shifts caused by temperature variations, enhancing interferogram phase stability and ensuring high-precision wind speed measurements. This method provides a robust and computationally efficient solution for reducing imaging shifts in DASH systems, and has great potential applications in atmospheric wind field measurement and space-based observation.
      Corresponding author: FENG Yutao, fytciom@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41005019), the West Light Foundation of Chinese Academy of Sciences (Grant No. XAB2016A07), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JQ-931), the West Light Cross-Disciplinary Innovation Team of Chinese Academy of Sciences (Grant No. E1294301), the National Key R&D Program of China (Grant No. 2023YFB3906000), and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20210021).
    [1]

    Shepherd G G 2015 Acta Astronaut. 115 206Google Scholar

    [2]

    Dhadly M, Sassi F, Emmert J, Drob D, Conde M, Wu Q, Makela J, Budzien S Nicholas A 2023 Astron. Space Sci. 9 1050586Google Scholar

    [3]

    唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜 2017 物理学报 66 130601Google Scholar

    Tang Y H, Cui J, Gao H Y, Qu O Y, Duan X D, Li C X, Liu L N 2017 Acta Phys. Sin. 66 130601Google Scholar

    [4]

    冯玉涛, 傅頔, 赵增亮, 宗位国, 余涛, 盛峥, 朱亚军 2023 光学学报 43 0601011

    Feng Y T, Fu D, Zhao Z L, Zong W G, Yu T, Sheng Z, Zhu Y J 2023 Acta Opt. Sin. 43 0601011

    [5]

    Zhang S P, Thayer J P, Roble R G 2004 J. Atmos Sol-terr. Phys. 66 105Google Scholar

    [6]

    Englert C R, Harlander J M, Babcock D D, Stevens M H, Siskind D E 2006 Proc. SPIE 6303 63030TGoogle Scholar

    [7]

    Englert C R, Babcock D D, Harlander J M 2006 Appl. Opt. 46 7297

    [8]

    Harlander J M, Englert C R, Emmert J T, Babcock D D, Roesler F 2010 Opt. Express 18 26430Google Scholar

    [9]

    肖旸, 冯玉涛, 文镇清 2022 光子学报 51 16

    Xiao Y, Feng Y T, Wen Z Q 2022 Acta Photon. Sin. 51 16

    [10]

    Harding B J, Chau J L, He M, Englert C R, Harlander J M, Marr K D, Makela J J, Clahsen M, Li G, Ratnam M V, Rao S V B, Wu Y J J, England S L, Immel T J 2021 J. Geophys. Res. Space Phys. 126 e2020JA028947Google Scholar

    [11]

    Englert C R, Harlander J M, Brown C M, Makela J J, Marr K D, Immel T J In Fourier Transform Spectroscopy Lake Arrowhead, California, United States, March 1–4, 2015 pFM4A-1

    [12]

    Stevens M H, Englert C R, Harlander J M, England S L, Marr K D, Brown C M, Immel T J 2018 Space Sci. Rev. 214 4Google Scholar

    [13]

    Harlander J M, Englert C R, Brown C M, Marr K D, Miller I J, Zastera V, Bach B W, Mende S B 2017 Space Sci. Rev. 212 601Google Scholar

    [14]

    Englert C R, Brown C M, Bach B, Bach E, Bach K, Harlander J M, Seely J F, Marr K D, Miller I 2017 Appl. Opt. 56 2090Google Scholar

    [15]

    Marr K D, Thayer A S, Englert C R, Harlander J M 2020 Opt. Eng. 59 013102

    [16]

    Englert C R, Harlander J M, Marr K D, Harding B J, Makela J J, Fae T, Brown C M, Venkat Ratnam M, Vijaya Bhaskara Rao S , Immel T J 2023 Space Sci. Rev. 219 27

    [17]

    张亚飞, 冯玉涛, 傅頔, 畅晨光, 李娟, 白清兰, 胡炳樑 2022 物理学报 71 084201Google Scholar

    Zhang Y F, Feng Y T, Fu D, Chang C G, Li J, Bai Q L, Hu B L 2022 Acta Phys. Sin. 71 084201Google Scholar

    [18]

    Zhang Y F, Feng Y T, Fu D, Wang P C, Sun J, Bai Q L 2020 Chin. Phys. B 29 104204Google Scholar

    [19]

    傅頔, 畅晨光, 孙剑, 李娟, 武魁军, 冯玉涛, 刘学斌 2022 光学学报 42 18

    Fu D, Chang C G, Sun J, Li J, Wu K J, Feng Y T, Liu X B 2022 Acta Opt. Sin. 42 18

    [20]

    Wei D K, Zhu Y J, Liu J L, Gong Q C, Kaufmann M, Olschewski F, Knieling P, Xu J Y, Koppmann R, Riese M 2020 Opt Express 28 19887Google Scholar

  • 图 1  DASH原理图, 右下角为干涉图(顶部为刻槽图像)

    Figure 1.  Schematic of a DASH interferometer. The interferogram is located at the lower right (The top area is notch pattern).

    图 2  (a)梳状函数; (b)梳状函数卷积矩形函数后的方波函数; (c)方波函数卷积高斯核后的刻槽形状

    Figure 2.  (a) The comb function; (b) the square wave function after the comb function convolved with the rectangle function; (c) the notch signal after the square wave function convolved with Gaussian kernel.

    图 3  实测刻槽信号及模拟刻槽信号

    Figure 3.  Measured notch signal and simulated notch signal.

    图 4  检测漂移量及检测误差

    Figure 4.  Measured imaging shift and measurement error.

    图 5  不同信噪比、不同成像漂移量下的成像漂移检测不确定度

    Figure 5.  Uncertainty of imaging shift measurement under different SNR and different imaging shift.

    图 6  SNR = 100时, 高斯函数标准差σ的拟合误差对测量精度的影响

    Figure 6.  Influence of fitting error of standard deviation σ of Gaussian function on measurement accuracy when SNR = 100

    图 7  SNR = 100下, 矩形函数宽度Wnotches的拟合误差对测量精度的影响

    Figure 7.  Influence of fitting error of rectangle function width Wnotches on measurement accuracy when SNR = 100.

    图 8  SNR = 100下, 脉冲数目Nnotches的拟合误差对测量精度的影响

    Figure 8.  Influence of fitting of pulse number Nnotches on measurement accuracy when SNR = 100.

    图 9  近红外多普勒差分干涉仪样机示意图

    Figure 9.  Schematic diagram of the near infrared DASH prototype.

    图 10  (a)实验中所测刻槽图像的成像漂移量(蓝色虚线), 对所测图像人为给定成像漂移量后对应的检测结果(绿色实线); (b)对实验中所测每一帧刻槽图像叠加固定的成像漂移量

    Figure 10.  (a) The imaging shift of the notch image measured in the experiment (blue dashed line), and the corresponding detection result of the notch image measured in the experiment after artificially superimposing the imaging shift amount (green solid line); (b) the fixed imaging shift is superimposed on each frame of notch image measured in the experiment.

    图 11  蓝线为图10(a)中两信号的差值, 即对人为给定漂移量的检测值, 红线为检测误差, 即检测成像漂移量与人为给定成像漂移量间的差值

    Figure 11.  The blue line is the difference between the two signals in Fig.10 (a), that is, the measurement of the artificially given amount of shift. The red line is the measurement error, that is, the difference between the measured image shift and the input image shift.

    图 12  近红外多普勒差分干涉仪样机的连续热稳定性测试数据, 灰色线为温度数据, 蓝色虚线为干涉条纹相位, 绿色线为成像漂移引起的相位变化, 蓝色实线为成像漂移校正后的干涉条纹相位

    Figure 12.  Thermal stability test data of the near infrared DASH prototype, the gray line is temperature data, the blue dashed line is fringe phase, the green line is phase change caused by imaging shift, and the blue solid line is fringe phase after imaging shift correction.

    表 1  仿真参数

    Table 1.  Simulation parameters.

    参数数值
    系统参数波长/nm867.16
    光程差/mm49.87
    光栅参数Littrow 波数/nm868.24
    光栅阶数1
    光栅闪耀角/(°)10
    光栅衍射效率70%
    探测器参数像元数2048×2048
    量子效率0.75
    像元尺寸/μm6.5
    刻槽信号参数刻槽数量111.81
    刻槽宽度/μm59.52
    DownLoad: CSV
  • [1]

    Shepherd G G 2015 Acta Astronaut. 115 206Google Scholar

    [2]

    Dhadly M, Sassi F, Emmert J, Drob D, Conde M, Wu Q, Makela J, Budzien S Nicholas A 2023 Astron. Space Sci. 9 1050586Google Scholar

    [3]

    唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜 2017 物理学报 66 130601Google Scholar

    Tang Y H, Cui J, Gao H Y, Qu O Y, Duan X D, Li C X, Liu L N 2017 Acta Phys. Sin. 66 130601Google Scholar

    [4]

    冯玉涛, 傅頔, 赵增亮, 宗位国, 余涛, 盛峥, 朱亚军 2023 光学学报 43 0601011

    Feng Y T, Fu D, Zhao Z L, Zong W G, Yu T, Sheng Z, Zhu Y J 2023 Acta Opt. Sin. 43 0601011

    [5]

    Zhang S P, Thayer J P, Roble R G 2004 J. Atmos Sol-terr. Phys. 66 105Google Scholar

    [6]

    Englert C R, Harlander J M, Babcock D D, Stevens M H, Siskind D E 2006 Proc. SPIE 6303 63030TGoogle Scholar

    [7]

    Englert C R, Babcock D D, Harlander J M 2006 Appl. Opt. 46 7297

    [8]

    Harlander J M, Englert C R, Emmert J T, Babcock D D, Roesler F 2010 Opt. Express 18 26430Google Scholar

    [9]

    肖旸, 冯玉涛, 文镇清 2022 光子学报 51 16

    Xiao Y, Feng Y T, Wen Z Q 2022 Acta Photon. Sin. 51 16

    [10]

    Harding B J, Chau J L, He M, Englert C R, Harlander J M, Marr K D, Makela J J, Clahsen M, Li G, Ratnam M V, Rao S V B, Wu Y J J, England S L, Immel T J 2021 J. Geophys. Res. Space Phys. 126 e2020JA028947Google Scholar

    [11]

    Englert C R, Harlander J M, Brown C M, Makela J J, Marr K D, Immel T J In Fourier Transform Spectroscopy Lake Arrowhead, California, United States, March 1–4, 2015 pFM4A-1

    [12]

    Stevens M H, Englert C R, Harlander J M, England S L, Marr K D, Brown C M, Immel T J 2018 Space Sci. Rev. 214 4Google Scholar

    [13]

    Harlander J M, Englert C R, Brown C M, Marr K D, Miller I J, Zastera V, Bach B W, Mende S B 2017 Space Sci. Rev. 212 601Google Scholar

    [14]

    Englert C R, Brown C M, Bach B, Bach E, Bach K, Harlander J M, Seely J F, Marr K D, Miller I 2017 Appl. Opt. 56 2090Google Scholar

    [15]

    Marr K D, Thayer A S, Englert C R, Harlander J M 2020 Opt. Eng. 59 013102

    [16]

    Englert C R, Harlander J M, Marr K D, Harding B J, Makela J J, Fae T, Brown C M, Venkat Ratnam M, Vijaya Bhaskara Rao S , Immel T J 2023 Space Sci. Rev. 219 27

    [17]

    张亚飞, 冯玉涛, 傅頔, 畅晨光, 李娟, 白清兰, 胡炳樑 2022 物理学报 71 084201Google Scholar

    Zhang Y F, Feng Y T, Fu D, Chang C G, Li J, Bai Q L, Hu B L 2022 Acta Phys. Sin. 71 084201Google Scholar

    [18]

    Zhang Y F, Feng Y T, Fu D, Wang P C, Sun J, Bai Q L 2020 Chin. Phys. B 29 104204Google Scholar

    [19]

    傅頔, 畅晨光, 孙剑, 李娟, 武魁军, 冯玉涛, 刘学斌 2022 光学学报 42 18

    Fu D, Chang C G, Sun J, Li J, Wu K J, Feng Y T, Liu X B 2022 Acta Opt. Sin. 42 18

    [20]

    Wei D K, Zhu Y J, Liu J L, Gong Q C, Kaufmann M, Olschewski F, Knieling P, Xu J Y, Koppmann R, Riese M 2020 Opt Express 28 19887Google Scholar

  • [1] WANG Enlong, WANG Guochao, ZHU Lingxiao, BIAN Jintian, MO Xiaojuan, KONG Hui. Optical ring cavity for homogeneous quantum nondemolition measurement in atom interferometer. Acta Physica Sinica, 2025, 74(3): 033701. doi: 10.7498/aps.74.20241348
    [2] Wang Song, Zhou Chuang, Li Su-Wen, Mou Fu-Sheng. Method of measuring atmospheric CO2 based on Fabry-Perot interferometer. Acta Physica Sinica, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [3] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [4] Zhang Ya-Fei, Feng Yu-Tao, Fu Di, Chang Chen-Guang, Li Juan, Bai Qing-Lan, Hu Bing-Liang. Thermal imaging drift monitoring of Doppler asymmetric spatial heterodyne spectroscopy for wind measurement based on segmented edge fitting. Acta Physica Sinica, 2022, 71(8): 084201. doi: 10.7498/aps.71.20212086
    [5] Sun Chen, Feng Yu-Tao, Fu Di, Zhang Ya-Fei, Li Juan, Liu Xue-Bin. A propagation of interferogram signal-to-noise (SNR) and phase uncertainty in Doppler asymmetric spatial heterodyne spectrometer. Acta Physica Sinica, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [6] Tang Yuan-He, Cui Jin, Gao Hai-Yang, Qu Ou-Yang, Duan Xiao-Dong, Li Cun-Xia, Liu Li-Na. Calibrations of ground based airglow imaging interferometer for the upper atmospheric wind field measurement. Acta Physica Sinica, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [7] Zhang Ri-Wei, Sun Xue-Jin, Yan Wei, Liu Lei, Li Yan, Zhao Jian, Yan Wan-Xiang, Li Hao-Ran. Simulation of frequency discrimination for spaceborne Doppler wind lidar (I):Study on the retrieval of atmospheric wind speed for Mie channel based on Fizeau interferometer. Acta Physica Sinica, 2014, 63(14): 140702. doi: 10.7498/aps.63.140702
    [8] Du Jun, Zhao Wei-Jiang, Qu Yan-Chen, Chen Zhen-Lei, Geng Li-Jie. Laser Doppler shift measuring method based on phase modulater and Fabry-Perot interferometer. Acta Physica Sinica, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [9] Zhang Xuan-Ni, Zhang Chun-Min, Ai Jing-Jing. The signal-to-noise ratio of the quarter beam of wind imaging polarization interferometer. Acta Physica Sinica, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [10] Zhang Xuan-Ni, Zhang Chun-Min. The optical transmission and improvement of flux for the static polarization wind imaging interferometer. Acta Physica Sinica, 2012, 61(10): 104210. doi: 10.7498/aps.61.104210
    [11] Dai Hai-Shan, Zhang Chun-Min, Mu Ting-Kui. Research of secondary fringes in field-widened achromatic, temperature-compensated wind, imaging interferometer (FATWindII). Acta Physica Sinica, 2012, 61(22): 224201. doi: 10.7498/aps.61.224201
    [12] Zhu Hua-Chun, Zhang Chun-Min. Theoretical study of polarization atmosphere Michelsoninterferometer using multi-wavelength. Acta Physica Sinica, 2011, 60(7): 074211. doi: 10.7498/aps.60.074211
    [13] Zhang Chun-Min, Zhu Lan-Yan. Influence of the polarization direction on the modulation depth and interferential intensity of a new polarizing atmospheric Michelson interferometer. Acta Physica Sinica, 2010, 59(2): 989-997. doi: 10.7498/aps.59.989
    [14] Zhu Hua-Chun, Zhang Chun-Min, Jian Xiao-Hua. A wide field wind image interferometer with chromatic and thermal compensation. Acta Physica Sinica, 2010, 59(2): 893-898. doi: 10.7498/aps.59.893
    [15] Liu Ning, Zhang Chun-Min, Wang Jin-Chan, Mu Ting-Kui. The theoretical measurement error of a novel static polarization wind imaging interferometer. Acta Physica Sinica, 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [16] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [17] Ye Jian-Yong, Zhang Chun-Min, Zhao Bao-Chang, Li Ying-Cai. Error analysis of four-intensity algorithm used for the measurement of upper atmosphere. Acta Physica Sinica, 2008, 57(1): 67-73. doi: 10.7498/aps.57.67
    [18] Ruan Kai, Zhang Chun-Min, Zhao Bao-Chang. Exact calculation of the optical path difference and lateral displacement of modified large optical path difference Sagnac interferometer in full view field used in upper atmospheric wind field measurement. Acta Physica Sinica, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [19] XU XIN-YE, WANG YU-ZHU. THEORETICAL ANALYSES OF A DOPPLER TYPE ATOMIC INTERFEROMETER. Acta Physica Sinica, 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
    [20] NI YU-CAI, WANG BANG-YI. PRECISION MEASUREMENT OF REFRACTIVE INDEX OF AIR BY AN IMPROVED RAYLEIGH INTERFEROMETER. Acta Physica Sinica, 1977, 26(1): 90-92. doi: 10.7498/aps.26.90
Metrics
  • Abstract views:  463
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2025
  • Accepted Date:  08 February 2025
  • Available Online:  17 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回