Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single-Pixel Imaging with Convolutional Neural Networks Enhanced by Attention Mechanisms

WANG Xiang ZHOU Yishen ZHANG Xuange CHEN Xihao

Citation:

Single-Pixel Imaging with Convolutional Neural Networks Enhanced by Attention Mechanisms

WANG Xiang, ZHOU Yishen, ZHANG Xuange, CHEN Xihao
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • This paper presents a novel convolutional neural network-based single-pixel imaging method that integrates a physics-driven fusion attention mechanism. By incorporating a module combining both channel and spatial attention mechanisms into a randomly initialized convolutional network, the method utilizes the physical model constraints of single-pixel imaging to achieve high-quality image reconstruction. Specifically, the spatial and channel attention mechanisms are combined into a single module and introduced into various layers of a multi-scale U-net convolutional network. In the spatial attention mechanism, we extract the attention weight features of each spatial region of the pooled feature map using convolution. In the channel attention mechanism, we pool the three-dimensional feature map into a single-channel signal and input it into a two-layer fully connected network to obtain the attention weight information for each channel. This approach not only leverages the critical weighting information provided by the attention mechanism in the three-dimensional data cube but also fully integrates the powerful feature extraction capabilities of the U-net network across different spatial frequencies. This innovative method effectively captures image details, suppresses background noise, and improves image reconstruction quality. During the experimental phase, we employed the optical path of single-pixel imaging to acquire bucket signals for two target images, ”snowflake” and ”basket”. By inputting any noise image into a randomly initialized neural network with an attention mechanism, and leveraging the mean square error between simulated and actual bucket signals, we physically constrained the network’s convergence. Ultimately, we achieved a reconstructed image that adhered to the physical model. Experimental results demonstrate that, under low sampling rate conditions, the scheme that integrates the attention mechanism not only intuitively reconstructs image details better but also demonstrates significant advantages in quantitative evaluation metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), verifying its effectiveness and potential for application in singlepixel imaging.
  • [1]

    Kilcullen P, Ozaki T, Liang J 2022 Nat. Commun. 137879

    [2]

    Hahamovich E, Monin S, Hazan Y, Rosenthal A 2021 Nat. Commun. 124516

    [3]

    Shapiro J H 2008 Phys. Rev. A 78061802

    [4]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L 2005 Physical review letters 94183602

    [5]

    Wang F, Wang C, Deng C, Han S, Situ G 2022 Photon. Res. 10104

    [6]

    Pan L, Shen Y, Qi J, Shi J, Feng X 2023 Opt. Express 3113943

    [7]

    Song K, Bian Y, Wang D, Li R, Wu K, Liu H, Qin C, Hu J, Xiao L 2024 Laser & Photonics Rev. published online 2401397

    [8]

    Zhao X S, Yu C, Wang C, Li T, Liu B, Lu H, Zhang R, Dou X, Zhang J, Pan J W 2024 Appl. Phys. Lett. 125211103

    [9]

    Karpowicz N, Zhong H, Xu J, Lin K I, Hwang J S, Zhang X C 2005 Semicond. Sci. Tech. 20 S293

    [10]

    Simões M, Vaz P, Cortez A F V 2024. arXiv:2411.03907[physics.ins-det]

    [11]

    Shwartz S 2021 Science Bulletin 66857

    [12]

    Olbinado M P, Paganin D M, Cheng Y, Rack A 2021 Optica 81538

    [13]

    Clemente P, Durán V, Tajahuerce E, Andrés P, Climent V, Lancis J 2013 Opt. Lett. 382524

    [14]

    Jiang W, Yin Y, Jiao J, Zhao X, Sun B 2022 Photon. Res. 102157

    [15]

    Gibson G M, Sun B, Edgar M P, Phillips D B, Hempler N, Maker G T, Malcolm G P A, Padgett M J 2017 Opt. Express 252998

    [16]

    Zhou L, Xiao Y, Chen W 2023 Opt. Express 3123027

    [17]

    Xu Y, Lu L, Saragadam V, Kelly K F 2024 Nat. Commun. 151456

    [18]

    Li J, Li X, Yardimci N T, Hu J, Li Y, Chen J, Hung Y C, Jarrahi M, Ozcan A 2023 Nat. Commun. 146791

    [19]

    Li S, Liu X, Xiao Y, Ma Y, Yang J, Zhu K, Tian X 2023 Opt. Express 314712

    [20]

    Zheng P, Dai Q, Li Z, Ye Z, Xiong J, Liu H C, Zheng G, Zhang S 2021 Sci. Adv. 7 eabg0363

    [21]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95131110

    [22]

    López-García L, Cruz-Santos W, GarcíaArellano A, Filio-Aguilar P, Cisneros-Martínez J A, Ramos-García R 2022 Opt. Express 3013714

    [23]

    Zhang Z, Ma X, Zhong J 2015 Nat. Commun. 66225

    [24]

    Donoho D 2006 IEEE T. Inform. Theory 521289

    [25]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Proc. Mag. 2583

    [26]

    Huang L, Luo R, Liu X, Hao X 2022 Light Sci. Appl. 1161

    [27]

    Figueiredo M A T, Nowak R D, Wright S J 2007

    [28]

    pioneers A 2024 Nat. Mach. Intell. 61271

    [29]

    Wenshu Z, Daolun L, Luhang S, Wen Z, Xuliang L 2022 Chinese Journal of Theoretical and Applied Mechanics 54543(in Chinses) [查文舒, 李道伦, 沈路航, 张雯, 刘旭亮2022力学学报54543]

    [30]

    Zhang H, Wang J, Zhang Y, Du X, Wu H, Zhang T 2024 Astronomical Techniques and Instruments 11

    [31]

    van Leeuwen C, Podareanu D, Codreanu V, Cai M X, Berg A, Zwart S P, Stoffer R, Veerman M, van Heerwaarden C, Otten S, Caron S, Geng C, Ambrosetti F, Bonvin A M J J 2020. arXiv:2004.03454[cs.CE]

    [32]

    Barbastathis G, Ozcan A, Situ G 2019 Optica 6921

    [33]

    Ruget A, Moodley C, Forbes A, Leach J 2024 Opt. Express 3241057

    [34]

    Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller D A B, Psaltis D 2020 Nat. 58839

    [35]

    Lyu M, Wang W, Wang H, Wang H, Li G, Chen N, Situ G 2017 Sci. Rep. 717865

    [36]

    Zhang X, Deng C, Wang C, Wang F, Situ G 2023 ACS Photonics 102363

    [37]

    Li J, Li Y, Li J, Zhang Q, Li J 2020 Opt. Express 2822992

    [38]

    Wang F, Wang C, Chen M, Gong W, Zhang Y, Han S, Situ G 2022 Light Sci. Appl. 111

    [39]

    Peng L, Xie S, Qin T, Cao L, Bian L 2023 Opt. Lett. 482527

    [40]

    Liu H, Bian L, Zhang J 2023 Opt. Laser Technol. 157108600

    [41]

    Liu X, Han T, Zhou C, Huang J, Ju M, Xu B, Song L 2023 Opt. Express 319945

    [42]

    Hammernik K, Küstner T, Yaman B, Huang Z, Rueckert D, Knoll F, Akçakaya M 2023 IEEE Signal Processing Magazine 4098

    [43]

    Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G W 2017. arXiv:1702.08502[cs.CV]

    [44]

    Ulyanov D, Vedaldi A, Lempitsky V 2020 IJCV 1281867

    [45]

    Ren W, Nie X, Peng T, Scully M O 2022 Opt. Express 3047921

    [46]

    Zhang H, Sindagi V, Patel V M 2020 IEEE Transactions on Circuits and Systems for Video Technology 303943

    [47]

    Lv W, Xiong J, Shi J, Huang Y, Qin S 2021 J. Intell. Manuf. 32441

    [48]

    Zhang H, Wang Z, Liu D 2014 IEEE Transactions on Neural Networks and Learning Systems 251229

    [49]

    Baozhou Z, Hofstee P, Lee J, Al-Ars Z 2021. arXiv:2108.08205[cs.CV]

    [50]

    Karim N, Rahnavard N 2021. arXiv:2107.01330[cs.CV]

    [51]

    Hoshi I, Shimobaba T, Kakue T, Ito T 2020 Opt. Express 2834069

    [52]

    Stollenga M, Masci J, Gomez F, Schmidhuber J 2014. arXiv:1407.3068[cs.CV]

    [53]

    Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y 2018. arXiv:1807.02758[cs.CV]

    [54]

    Liao X, He L, Mao J, Xu M 2024 Remote Sensing 161688

    [55]

    Yu W K, Wang S F, Shang K Q 2024 Sensors 241012

    [56]

    Ronneberger O, Fischer P, Brox T 2015. arXiv:1505.04597[cs.CV]

    [57]

    Lyu M, Wang W, Wang H, Wang H, Li G, Chen N, Situ G 2017 Scientific Reports 717865

    [58]

    Meng Z, Yu Z, Xu K, Yuan X 2021. arXiv:2108.12654[eess.IV]

    [59]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104253603

    [60]

    Lin J, Yan Q, Lu S, Zheng Y, Sun S, Wei Z 2022 Photonics 9343

  • [1] Sun Kang-Sheng, Han Chao, Qin Hai-Feng, Gu Tao, Li Wei, Yu Cheng. Fast generation algorithm of high-quality holograms based on attention convolutional neural network. Acta Physica Sinica, doi: 10.7498/aps.74.20241713
    [2] Chen Ming-Lai, Ma Cai-Wen, Liu Hui, Luo Xiu-Juan, Feng Xu-Bin, Yue Ze-Lin, Zhao Jing. Fast sampling based image reconstruction algorithm for sheared-beam imaging. Acta Physica Sinica, doi: 10.7498/aps.73.20231254
    [3] He Zhi-Ye, Zhang Yan-Dong, Tang Chun-Hua, Li Jun-Li, Li Si-Wei, Yu Bin. Analysis of influence of imaging resolution of relay lens on image reconstruction quality in pixel-wise coded exposure imaging technology. Acta Physica Sinica, doi: 10.7498/aps.72.20221588
    [4] Zhang Jian, Chen Jia-Lin, Chen Xiao-Ran, Mao Tian-Yi, Shen Shan-Shan, He Rui-Qing. Dynamic occlusion removal in single-pixel imaging system based on self-check. Acta Physica Sinica, doi: 10.7498/aps.72.20221918
    [5] Zhu Qi, Xu Duo, Zhang Yuan-Jun, Li Yu-Juan, Wang Wen, Zhang Hai-Yan. Ultrasonic detection of white etching defect based on convolution neural network. Acta Physica Sinica, doi: 10.7498/aps.71.20221504
    [6] Hu Jin-Hu, Lin Dan-Ying, Zhang Wei, Zhang Chen-Shuang, Qu Jun-Le, Yu Bin. Dual-sided illumination light-sheet fluorescence microscopy with virtual single-pixel imaging deconvolution. Acta Physica Sinica, doi: 10.7498/aps.71.20211358
    [7] Zhan Qing-Liang, Bai Chun-Jin, Ge Yao-Jun. Deep learning representation of flow time history for complex flow field. Acta Physica Sinica, doi: 10.7498/aps.71.20221314
    [8] Cui An-Jing, Li Dao-Jing, Wu Jiang, Zhou Kai, Gao Jing-Han. Sparse sampling in frequency domain and laser imaging. Acta Physica Sinica, doi: 10.7498/aps.71.20211408
    [9] Zhao Wei-Rui, Wang Hao, Zhang Lu, Zhao Yue-Jin, Chu Chun-Yan. High-precision co-phase method for segments based on a convolutional neural network. Acta Physica Sinica, doi: 10.7498/aps.71.20220434
    [10] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, doi: 10.7498/aps.71.20220954
    [11] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, doi: 10.7498/aps.70.20201362
    [12] Huang Wei-Jian, Li Yong-Tao, Huang Yuan. Prediction of chaotic time series using hybrid neural network and attention mechanism. Acta Physica Sinica, doi: 10.7498/aps.70.20200899
    [13] Xu Qi-Wei, Wang Pei-Pei, Zeng Zhen-Jia, Huang Ze-Bin, Zhou Xin-Xing, Liu Jun-Min, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Extracting atmospheric turbulence phase using deep convolutional neural network. Acta Physica Sinica, doi: 10.7498/aps.69.20190982
    [14] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, doi: 10.7498/aps.69.20191935
    [15] Li Ming-Fei, Yan Lu, Yang Ran, Liu Yuan-Xing. Fast single-pixel imaging based on optimized reordering Hadamard basis. Acta Physica Sinica, doi: 10.7498/aps.68.20181886
    [16] Zhou Yang,  Zhang Hong-Wei,  Zhong Fei,  Guo Shu-Xu. Iterative denoising of ghost imaging based on adaptive threshold method. Acta Physica Sinica, doi: 10.7498/aps.67.20181240
    [17] Yao Wei-Qiang, Huang Wen-Hao, Yang Chu-Ping. Theoretical analysis of spectrum reconstruction imaging using single-pixel detection. Acta Physica Sinica, doi: 10.7498/aps.66.034201
    [18] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, doi: 10.7498/aps.65.219501
    [19] Yu Shu-Hai, Dong Lei, Liu Xin-Yue, Ling Jian-Yong. Analysis on reconstruction of virtual images of Fourier telescopy. Acta Physica Sinica, doi: 10.7498/aps.64.184205
    [20] Cao Bei, Luo Xiu-Juan, Si Qing-Dan, Zeng Zhi-Hong. Four-phase closure algorithm for coherent field imaging. Acta Physica Sinica, doi: 10.7498/aps.64.054204
Metrics
  • Abstract views:  54
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  21 February 2025

/

返回文章
返回