Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sparse sampling in frequency domain and laser imaging

Cui An-Jing Li Dao-Jing Wu Jiang Zhou Kai Gao Jing-Han

Citation:

Sparse sampling in frequency domain and laser imaging

Cui An-Jing, Li Dao-Jing, Wu Jiang, Zhou Kai, Gao Jing-Han
PDF
HTML
Get Citation
  • The monochromaticity of the laser and the characteristics of the natural image’s spectrum, including sparsity and concentrating in the low frequency range, make it possible to sample the image spectrum sparsely. Based on small-scale laser detectors and the introduced laser reference signals, a method of laser imaging with sparse sampling in frequency domain is proposed in this paper. The principle of frequency sparse sampling laser imaging and the imaging system structure are introduced. The simulation results of spectrum and complex images reconstructed are given. Both the effects of the signals’ parameters, such as the ratio of the reference laser signal amplitude to the laser echo spectrum amplitude and the initial phase of the laser reference signal, on reconstruction results are investigated. The reconstruction results are evaluated by correlation coefficient, mean square error (MSE), and structural similarity index (SSIM). For the strong correlation between phase and amplitude of the laser echo complex image, the amplitude image and the phase image are both set to be 256 × 256 diagram. The sparse laser detector plane array consists of 5 64 × 64 frequency domain laser detector arrays, which form a cross and make a sparsity rate of 31.25%(5/16). The simulation results show that the correlation coefficient, MSE and SSIM of the spectrum reconstructed are 0.96, 22.14, 1.00 and those of the complex image reconstructed are 0.96, 1857.25 and 0.67 respectively. The simulation results indicate that the method proposed is effective. However, the method requires the laser reference signal amplitude to be about 30 times the mean value of the laser echo spectrum amplitude, which reduces the dynamic range of the detectors. The initial phase of the laser reference signal has no obvious effect on the reconstruction results.
      Corresponding author: Li Dao-Jing, lidj@mail.ie.ac.cn
    • Funds: Project supported by the Key Project of Chinese Academy of Sciences (Grant No. E03701010F).
    [1]

    吕乃光 2013 傅里叶光学 (2版) (北京: 机械工业出版社) 第297—312页

    Lü N G 2013 Fourier Optics (Second Edition) (Beijing: China Machine Press) pp297–312 (in Chinese)

    [2]

    韩亮, 田逢春, 徐鑫, 刘伟, 王宇 2008 重庆大学学报 31 426Google Scholar

    Han L, Tian F C, Xü X, Liu W, Wang Y 2008 J. Chongqing Univ. 31 426Google Scholar

    [3]

    Zheng G, Horstmeyer R, Yang C 2013 Nature Photon. 7 739Google Scholar

    [4]

    孙佳嵩, 张玉珍, 陈钱, 左超 2016 光学学报 36 327Google Scholar

    Sun J S, Zhang Y Z, Chen Q, Zuo C 2016 Acta Opt. Sin. 36 327Google Scholar

    [5]

    邵晓鹏, 苏云, 刘金鹏, 刘飞, 李伟, 席特立 2021 光子学报 50 931Google Scholar

    Shao X P, Su Y, Liu J P, Liu F, Li W, Xi T L 2021 Acta Photon. Sin. 50 931Google Scholar

    [6]

    赵明, 王希明, 张晓慧, 张望 2019 激光与光电子学进展 56 121Google Scholar

    Zhao M, Wang X M, Zhang X H, Zhang W 2019 Laser & Optoelectronics Progress 56 121Google Scholar

    [7]

    Xiang M, Pan A, Zhao Y, Fan X, Yao B 2021 Opt. Lett. 46 29Google Scholar

    [8]

    李道京, 朱宇, 胡烜, 于海锋, 周凯, 张润宁, 刘磊 2020 雷达学报 9 195Google Scholar

    Li D J, Zhu Y, Hu X, Yu H F, Zhou K, Zhang R N, Liu L 2020 J. Radars 9 195Google Scholar

    [9]

    Rogers C, Piggott A Y, Thomson D J, Wiser R F, Nicolaescu R 2021 Nature 590 256Google Scholar

    [10]

    李道京, 周凯, 崔岸婧, 乔明, 吴淑梅, 王烨菲, 姚园, 吴疆, 高敬涵 2021 激光与光电子学进展 58 342Google Scholar

    Li D J, Zhou K, Cui A J, Qiao M, Wu S M, Wang Y F, Yao Y, Wu J, Gao J H 2021 Laser & Optoelectronics Progress 58 342Google Scholar

    [11]

    李琦, 丁胜晖, 李运达, 薛凯, 王骐 2012 激光与光电子学进展 49 46Google Scholar

    Li Q, Ding S H, Li Y D, Xue K, Wang Q 2012 Laser & Optoelectronics Progress 49 46Google Scholar

    [12]

    马利红, 王辉, 金洪震, 李勇 2012 中国激光 39 215Google Scholar

    Ma L H, Wang H, Jin H Z, Li Y 2012 Chinese J of Lasers 39 215Google Scholar

    [13]

    保铮, 邢孟道, 王彤 2005 雷达成像技术 (北京: 电子工业出版社)pp30—44

    Bao Z, Xing M D, Wang T 2005 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp30–44 (in Chinese)

    [14]

    戴永江 2002 激光雷达原理 (北京: 国防工业出版社) pp256–260

    Dai Y J 2002 Principle of Lidar (Beijing: National Defense Industry Press) pp256—260 (in Chinese)

    [15]

    谢宗良, 马浩统, 任戈, 亓波, 丁科 2015 光学学报 35 102Google Scholar

    Xie Z L, Ma H T, Ren G, Qi B, Ding K 2015 Acta Opt. Sin. 35 102Google Scholar

    [16]

    Tang W, Guo Y, Yi W, Yang J, Zhu J, Wang W, Li X 2019 Opt. Commun. 443 144Google Scholar

    [17]

    李烈辰 2015 博士学位论文 (北京: 中国科学院大学)

    Li L C 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinses)

    [18]

    Rousseau D, Delahaies A, Chapeau-Blondeau F 2009 IEEE Signal Processing Letters 17 36Google Scholar

    [19]

    Tian H, Li D J 2017 IET Radar, Sonar & Navigation 11 1886Google Scholar

    [20]

    张文辉, 曹良才, 金国藩 2019 红外与激光工程 48 104Google Scholar

    Zhang W H, Cao L C, Jin G F 2019 Infrared and Laser Engineering 48 104Google Scholar

    [21]

    张美玲, 郜鹏, 温凯, 卓可群, 王阳, 刘立新, 闵俊伟, 姚保利 2021 光子学报 50 9Google Scholar

    Zhang M L, Gao P, Wen K, Zhuo K Q, Wang Y, Liu L X, Min J W, Yao B L 2021 Acta Photonica Sinica 50 9Google Scholar

  • 图 1  基于直接探测器的频域稀疏采样成像系统结构

    Figure 1.  Structure of the frequency-domain sparse sampling imaging system based on direct detector.

    图 2  激光回波复图像幅度图

    Figure 2.  Laser echo complex image amplitude diagram.

    图 3  面阵探测器频谱实部重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Figure 3.  Reconstruction of the real part of the plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 4  面阵探测器频谱虚部重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Figure 4.  Reconstruction of the imaginary part of the plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 5  面阵探测器频谱重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Figure 5.  Reconstruction of the plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 6  5个1/4 × 1/4规模频域探测器拼接构成十字型探测范围

    Figure 6.  Cross detection range constituted by five 1/4 × 1/4 scale frequency domain detectors.

    图 7  稀疏面阵探测器频谱实部重构 (a)频谱幅度; (b)频谱相位; (c) 图像

    Figure 7.  Reconstruction of the real part of the sparse plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 8  稀疏面阵探测器频谱虚部重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Figure 8.  Reconstruction of the imaginary part of the sparse plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 9  稀疏面阵探测器频谱重构 (a)频谱幅度; (b)频谱相位; (c)图像

    Figure 9.  Reconstruction of the sparse plane array detector signals’ spectrum: (a) Amplitude of the spectrum; (b) phase of the spectrum; (c) image.

    图 10  R与稀疏面阵探测器重构复图像相干系数的变化曲线

    Figure 10.  Change curves of the relationship between R and correlation coefficient of the reconstructed complex image of the sparse plane array detectors.

    图 11  $ {\varphi _2}\left( {x, y} \right) $与稀疏面阵探测器重构复图像相干系数的变化曲线

    Figure 11.  Change curves of the relationship between $ {\varphi _2}\left( {x, y} \right) $ and correlation coefficient of the reconstructed complex image of the sparse plane array detectors .

    表 1  面阵探测器和稀疏面阵探测器频谱与复图像重构效果

    Table 1.  Spectrum and complex image reconstruction effect of the plane array detectors and the sparse plane array detectors.

    重构结果相干
    系数
    均方
    误差
    结构
    相似度
    面阵探测器重构频谱1.002.511.00
    面阵探测器重构复图像1.000.011.00
    稀疏面阵探测器重构频谱0.9622.141.00
    稀疏面阵探测器重构复图像0.961857.250.67
    DownLoad: CSV
  • [1]

    吕乃光 2013 傅里叶光学 (2版) (北京: 机械工业出版社) 第297—312页

    Lü N G 2013 Fourier Optics (Second Edition) (Beijing: China Machine Press) pp297–312 (in Chinese)

    [2]

    韩亮, 田逢春, 徐鑫, 刘伟, 王宇 2008 重庆大学学报 31 426Google Scholar

    Han L, Tian F C, Xü X, Liu W, Wang Y 2008 J. Chongqing Univ. 31 426Google Scholar

    [3]

    Zheng G, Horstmeyer R, Yang C 2013 Nature Photon. 7 739Google Scholar

    [4]

    孙佳嵩, 张玉珍, 陈钱, 左超 2016 光学学报 36 327Google Scholar

    Sun J S, Zhang Y Z, Chen Q, Zuo C 2016 Acta Opt. Sin. 36 327Google Scholar

    [5]

    邵晓鹏, 苏云, 刘金鹏, 刘飞, 李伟, 席特立 2021 光子学报 50 931Google Scholar

    Shao X P, Su Y, Liu J P, Liu F, Li W, Xi T L 2021 Acta Photon. Sin. 50 931Google Scholar

    [6]

    赵明, 王希明, 张晓慧, 张望 2019 激光与光电子学进展 56 121Google Scholar

    Zhao M, Wang X M, Zhang X H, Zhang W 2019 Laser & Optoelectronics Progress 56 121Google Scholar

    [7]

    Xiang M, Pan A, Zhao Y, Fan X, Yao B 2021 Opt. Lett. 46 29Google Scholar

    [8]

    李道京, 朱宇, 胡烜, 于海锋, 周凯, 张润宁, 刘磊 2020 雷达学报 9 195Google Scholar

    Li D J, Zhu Y, Hu X, Yu H F, Zhou K, Zhang R N, Liu L 2020 J. Radars 9 195Google Scholar

    [9]

    Rogers C, Piggott A Y, Thomson D J, Wiser R F, Nicolaescu R 2021 Nature 590 256Google Scholar

    [10]

    李道京, 周凯, 崔岸婧, 乔明, 吴淑梅, 王烨菲, 姚园, 吴疆, 高敬涵 2021 激光与光电子学进展 58 342Google Scholar

    Li D J, Zhou K, Cui A J, Qiao M, Wu S M, Wang Y F, Yao Y, Wu J, Gao J H 2021 Laser & Optoelectronics Progress 58 342Google Scholar

    [11]

    李琦, 丁胜晖, 李运达, 薛凯, 王骐 2012 激光与光电子学进展 49 46Google Scholar

    Li Q, Ding S H, Li Y D, Xue K, Wang Q 2012 Laser & Optoelectronics Progress 49 46Google Scholar

    [12]

    马利红, 王辉, 金洪震, 李勇 2012 中国激光 39 215Google Scholar

    Ma L H, Wang H, Jin H Z, Li Y 2012 Chinese J of Lasers 39 215Google Scholar

    [13]

    保铮, 邢孟道, 王彤 2005 雷达成像技术 (北京: 电子工业出版社)pp30—44

    Bao Z, Xing M D, Wang T 2005 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp30–44 (in Chinese)

    [14]

    戴永江 2002 激光雷达原理 (北京: 国防工业出版社) pp256–260

    Dai Y J 2002 Principle of Lidar (Beijing: National Defense Industry Press) pp256—260 (in Chinese)

    [15]

    谢宗良, 马浩统, 任戈, 亓波, 丁科 2015 光学学报 35 102Google Scholar

    Xie Z L, Ma H T, Ren G, Qi B, Ding K 2015 Acta Opt. Sin. 35 102Google Scholar

    [16]

    Tang W, Guo Y, Yi W, Yang J, Zhu J, Wang W, Li X 2019 Opt. Commun. 443 144Google Scholar

    [17]

    李烈辰 2015 博士学位论文 (北京: 中国科学院大学)

    Li L C 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinses)

    [18]

    Rousseau D, Delahaies A, Chapeau-Blondeau F 2009 IEEE Signal Processing Letters 17 36Google Scholar

    [19]

    Tian H, Li D J 2017 IET Radar, Sonar & Navigation 11 1886Google Scholar

    [20]

    张文辉, 曹良才, 金国藩 2019 红外与激光工程 48 104Google Scholar

    Zhang W H, Cao L C, Jin G F 2019 Infrared and Laser Engineering 48 104Google Scholar

    [21]

    张美玲, 郜鹏, 温凯, 卓可群, 王阳, 刘立新, 闵俊伟, 姚保利 2021 光子学报 50 9Google Scholar

    Zhang M L, Gao P, Wen K, Zhuo K Q, Wang Y, Liu L X, Min J W, Yao B L 2021 Acta Photonica Sinica 50 9Google Scholar

  • [1] Chen Ming-Lai, Ma Cai-Wen, Liu Hui, Luo Xiu-Juan, Feng Xu-Bin, Yue Ze-Lin, Zhao Jing. Fast sampling based image reconstruction algorithm for sheared-beam imaging. Acta Physica Sinica, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [2] Zhang Hai-Peng, Zhao Chang-Zhe, Ju Xiao-Lu, Tang Jie, Xiao Ti-Qiao. Improving quality of crystal diffraction based X-ray ghost imaging through iterative reconstruction algorithm. Acta Physica Sinica, 2022, 71(7): 074201. doi: 10.7498/aps.71.20211978
    [3] Chen Ming-Lai, Liu Hui, Zhang Yu, Luo Xiu-Juan, Ma Cai-Wen, Yue Ze-Lin, Zhao Jing. Spatial domain sparse reconstruction algorithm of sheared beam imaging. Acta Physica Sinica, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [4] Zhang Tao, Hou Hong, Bao Ming. Imaging through coda wave interferometryvia sparse reconstruction. Acta Physica Sinica, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [5] Zhao Lei, Xu Miao-Hua, Zhang Yi-Hang, Zhang Zhe, Zhu Bao-Jun, Jiang Wei-Man, Zhang Xiao-Peng, Zhao Xu, Tong Bo-Wei, He Shu-Kai, Lu Feng, Wu Yu-Chi, Zhou Wei-Min, Zhang Fa-Qiang, Zhou Kai-Nan, Xie Na, Huang Zheng, Zhong Jia-Yong, Gu Yu-Qiu, Li Yu-Tong, Li Ying-Jun. Laser fast neutron measured by bubble detector. Acta Physica Sinica, 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [6] Zhou Yang,  Zhang Hong-Wei,  Zhong Fei,  Guo Shu-Xu. Iterative denoising of ghost imaging based on adaptive threshold method. Acta Physica Sinica, 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [7] Zhang Wei, Zhang He, Chen Yong, Zhang Xiang-Jin, Xu Xiao-Bin. Angle measurement uncertainty statistical distribution of pulsed laser quadrant photodetector. Acta Physica Sinica, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [8] Fan Jin-Yu, Gao Feng, Kong Wen, Li Hai-Wen, Shi Guo-Hua. A full spectrum resamping method in polygon tunable laser-based swept-source optical coherence tomography. Acta Physica Sinica, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [9] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [10] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [11] Liu Jing, Jin Wei-Qi, Wang Xia, Lu Xiao-Tian, Wen Ren-Jie. A new algorithm for polarization information restoration with considering the property of optoelectronic polarimeter. Acta Physica Sinica, 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [12] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [13] Yu Shu-Hai, Dong Lei, Liu Xin-Yue, Ling Jian-Yong. Analysis on reconstruction of virtual images of Fourier telescopy. Acta Physica Sinica, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [14] Cao Bei, Luo Xiu-Juan, Si Qing-Dan, Zeng Zhi-Hong. Four-phase closure algorithm for coherent field imaging. Acta Physica Sinica, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [15] Zheng Shi-Lian, Yang Xiao-Niu, Zhao Zhi-Jin. Reconstruction verification for random demodulator based compressed sampling. Acta Physica Sinica, 2014, 63(22): 228401. doi: 10.7498/aps.63.228401
    [16] Jiang Tian, Cheng Xiang-Ai, Zheng Xin, Xu Zhong-Jie, Jiang Hou-Man, Lu Qi-Sheng. Investigation of the nonlinear response mechanism of photovoltaic HgCdTe detector irradiated by CW band-in laser. Acta Physica Sinica, 2012, 61(13): 137302. doi: 10.7498/aps.61.137302
    [17] Zheng Xin, Jiang Tian, Cheng Xiang-Ai, Jiang Hou-Man, Lu Qi-Sheng. A new phenomenon of photoconductive InSb detector under the irradiation of out-band laser. Acta Physica Sinica, 2012, 61(4): 047302. doi: 10.7498/aps.61.047302
    [18] Yu Wen-Ying, An Li-Qian. Analytical model of range-doppler of cone-cylinder combination. Acta Physica Sinica, 2012, 61(21): 218703. doi: 10.7498/aps.61.218703
    [19] Tan Zhi-Yong, Guo Xu-Guang, Cao Jun-Cheng, Li Hua, Han Ying-Jun. Emission spectra of terahertz quantum-cascade lasers based on the terahertz quantum-well photodetectors. Acta Physica Sinica, 2010, 59(4): 2391-2395. doi: 10.7498/aps.59.2391
    [20] Yin Fei, Hu Wei-Da, Quan Zhi-Jue, Zhang Bo, Hu Xiao-Ning, Li Zhi-Feng, Chen Xiao-Shuang, Lu Wei. Determination of electron diffusion length in HgCdTe photodiodes using laser beam induced current. Acta Physica Sinica, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
Metrics
  • Abstract views:  3673
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2021
  • Accepted Date:  12 February 2022
  • Available Online:  17 February 2022
  • Published Online:  05 March 2022

/

返回文章
返回