Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical inversion of PT-symmetric potential functions for (1+1)-dimensional nonlinear Schrödinger equations

WANG Yang XU Yinghong ZHAO Yedan ZHANG Lipu

Citation:

Numerical inversion of PT-symmetric potential functions for (1+1)-dimensional nonlinear Schrödinger equations

WANG Yang, XU Yinghong, ZHAO Yedan, ZHANG Lipu
cstr: 32037.14.aps.74.20250129
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The inverse problem of reconstructing the PT-symmetric potential in a class of (1+1)-dimensional nonlinear Schrödinger equation is investigated in this work. The governing equation is given as follows:      $ \text{i}u_t(x,t) + u_{xx}(x,t) + \alpha\left| u(x,t) \right|^2 u(x,t) + \beta\left| u(x,t) \right|^4 u(x,t) + V_{\rm PT}(x) u(x,t) = 0, $where u(x, t) denotes the wave function in dimensionless coordinates, and the PT-symmetric potential VPT(x) = V(x)+iW(x) consists of a real part V(x) and an imaginary part iW(x), satisfying the symmetry conditions V(x) = V(–x) and W(x) = –W(x).In this inverse problem, partial boundary values of the wave function are known, while the potential $ V_{\rm PT}(x) $ is the unknown to be reconstructed. To address this challenge, we construct a three-level finite difference scheme for the corresponding forward problem, discretizing both the wave function and the potential. This approach leads to a nonlinear system of equations that links the known wave data to the unknown potential values. To simplify the computation, we separate the real and imaginary parts of this system and reformulate it as a real-valued nonlinear system of equations.For the numerical solution, we employ an inexact Newton method to iteratively solve the resulting nonlinear system. In each iteration, the Jacobian matrix is approximated numerically. To ensure that the reconstructed potential strictly satisfies the PT-symmetry, a parity correction mechanism is introduced at the end of the iteration process.We conduct numerical experiments under both noise-free (exact data) and noisy (inexact data) conditions. The results indicate that in both cases, the proposed method converges within a limited number of iterations and keeps the reconstruction error within the order of 10–3. These findings verify the effectiveness and robustness of this method in solving inverse problems of PT-symmetric potentials, and provide a new idea and powerful method for related numerical applications.
      Corresponding author: XU Yinghong, xyh7913@zstu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11501513) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY18A010030).
    [1]

    Liu Y P, Gao Y T, Wei G M 2012 Phys. A Stat. Mech. Appl. 391 535Google Scholar

    [2]

    Uthayakumar A, Han Y G, Lee S B 2006 Chaos Solitons Fractals 29 916Google Scholar

    [3]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [4]

    El-Ganainy R, Makris K G, Christodoulides D N, Musslimani Z H 2007 Opt. Lett. 32 2632Google Scholar

    [5]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [6]

    Baudouin L, Puel J P 2002 Inverse Probl. 18 1537Google Scholar

    [7]

    Avdonin S A, Mikhaylov A S, Mikhaylov V S, Park J C 2021 Inverse Problems 37 035002Google Scholar

    [8]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [9]

    Zhou Z, Yan Z 2021 Phys. Lett. A 387 127010Google Scholar

    [10]

    Li J, Li B 2021 Commun. Theor. Phys. 73 125001Google Scholar

    [11]

    张坤 2024 理论数学 14 117Google Scholar

    Zhang K 2024 Pure Math. 14 117Google Scholar

    [12]

    Qiu W X, Geng K L, Zhu B W, Liu W, Li J T, Dai C Q 2024 Nonlinear Dyn. 112 10215Google Scholar

    [13]

    Song J, Yan Z 2023 Physica D 448 133729Google Scholar

    [14]

    Wang S, Wang H, Perdikaris P 2021 Comput. Methods Appl. Mech. Eng. 384 113938Google Scholar

    [15]

    Liu Y, Wu R, Jiang Y 2024 J. Comput. Phys. 518 113341Google Scholar

    [16]

    Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021 Nat. Rev. Phys. 3 422Google Scholar

    [17]

    Lu L, Meng X, Mao Z, Karniadakis G E 2021 SIAM Rev. 63 208Google Scholar

    [18]

    孙志忠 2022 偏微分方程数值解法 (第三版) (北京: 科学出版社) 第 320—349页

    Sun Z Z 2022 Numerical Solution of Partial Differential Equations. (3rd Ed.) (Beijing: Science Press) pp320–349

    [19]

    Dembo R S, Eisenstat S C, Steihaug T 1982 SIAM J. Numer. Anal. 19 400Google Scholar

    [20]

    Göksel İ, Antar N, Bakırtaş İ 2015 Opt. Commun. 354 277Google Scholar

  • 图 1  $ V_{{\rm{PT}}}(x) $实部及虚部反演结果  (a) $ V_{{\rm{PT}}}(x) $实部的实际精确值与INTA和mPINNs反演结果的对比; (b) $ V_{{\rm{PT}}}(x) $虚部的实际精确值与INTA和mPINNs反演结果的对比; (c) INTA反演结果实部与虚部的绝对误差

    Figure 1.  Real and imaginary part inversion results of $ V_{{\rm{PT}}}(x) $: (a) Comparison of the real part of $ V_{{\rm{PT}}}(x) $ with the inversion results of INTA and mPINNs; (b) comparison of the imaginary part of $ V_{{\rm{PT}}}(x) $ with the inversion results of INTA and mPINNs; (c) absolute error of the real and imaginary parts of INTA inversion results.

    图 2  (a) INTA每次迭代后的误差; (b) mPINNs与精确解$ u(x, z) $之间的误差

    Figure 2.  (a) Error after each iteration of INTA; (b) error between mPINNs and the exact solution $ u(x, z) $.

    图 3  $ V_{{\rm{PT}}}(x) $实部及虚部反演结果(${\boldsymbol{ U}^*} $包含噪声) (a) INTA和mPINNs反演结果与$ V_{{\rm{PT}}}(x) $实部的实际精确值的对比; (b) INTA和mPINNs反演结果与$ V_{{\rm{PT}}}(x) $虚部的实际精确值的对比; (c) INTA反演结果实部与虚部的绝对误差

    Figure 3.  Real and imaginary part inversion results of $ V_{{\rm{PT}}}(x) $ ($ {\boldsymbol{U}^*} $ with noise): (a) Comparison of the real part of $ V_{{\rm{PT}}}(x) $ with the inversion results of INTA and mPINNs; (b) Comparison of the imaginary part of $ V_{{\rm{PT}}}(x) $ with the inversion results of INTA and mPINNs; (c) absolute error of the real and imaginary parts of INTA inversion results.

    图 4  误差($ {\boldsymbol{U}}^* $包含噪声) (a) INTA每次迭代后的误差error; (b) mPINNs与精确解$ u(x, z) $之间的误差

    Figure 4.  Errors ($ {\boldsymbol{U}}^* $ with noise): (a) Error after each iteration of INTA; (b) error between mPINNs and the exact solution $ u(x, z) $.

    表 1  INTA与mPINNs对比

    Table 1.  Comparison between INTA and mPINNs.

    算法 实部误差 虚部误差 运行时间/s
    INTA $ 6.1768\times10^{-13} $ $ 7.6891\times10^{-12} $ 61.3
    mPINNs 0.0416 0.01549 113.8
    DownLoad: CSV

    表 2  绝对误差

    Table 2.  Absolute error.

    x $ 0.1 $ $ 0.2 $ $ 0.3 $ $ 0.4 $ $ 0.5 $ $ 0.6 $ $ 0.7 $ $ 0.8 $ $ 0.9 $
    INTA实部 $ 6.4\times 10^{-13} $ $ 6.5\times 10^{-13} $ $ 6.1\times 10^{-13} $ $ 6.0\times 10^{-13} $ $ 6.1\times 10^{-13} $ $ 6.4\times 10^{-13} $ $ 7.3\times 10^{-13} $ $ 7.8\times 10^{-13} $ $ 8.0\times 10^{-13} $
    mPINNs实部 $ 5.3\times 10^{-3} $ $ 8.8\times 10^{-3} $ $ 8.6\times 10^{-3} $ $ 4.8\times 10^{-3} $ $ 1.5\times 10^{-3} $ $ 8.5\times 10^{-3} $ $ 1.4\times 10^{-2} $ $ 1.6\times 10^{-2} $ $ 1.1\times 10^{-2} $
    INTA虚部 $ 1.4\times 10^{-12} $ $ 1.6\times 10^{-12} $ $ 1.3\times 10^{-12} $ $ 7.5\times 10^{-13} $ $ 5.2\times 10^{-13} $ $ 4.7\times 10^{-13} $ $ 6.8\times 10^{-13} $ $ 9.5\times 10^{-13} $ $ 5.5\times 10^{-13} $
    mPINNs虚部 $ 1.4\times 10^{-2} $ $ 1.7\times 10^{-3} $ $ 4.0\times 10^{-3} $ $ 2.3\times 10^{-3} $ $ 4.0\times 10^{-3} $ $ 5.3\times 10^{-3} $ $ 6.1\times 10^{-3} $ $ 5.7\times 10^{-3} $ $ 4.3\times 10^{-3} $
    DownLoad: CSV

    表 3  INTA与mPINNs对比($ {\boldsymbol{U}^*} $包含噪声)

    Table 3.  Comparison between INTA and mPINNs ($ {\boldsymbol{U}^*} $ with noise).

    算法 实部误差 虚部误差 运行时间/s
    INTA 0.0043 0.0126 71.5
    mPINNs 0.0098 0.0452 112.3
    DownLoad: CSV

    表 4  绝对误差($ {\boldsymbol{U}}^* $包含噪声)

    Table 4.  Absolute error (${\boldsymbol{U}}^* $ with noise).

    x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
    INTA实部 $ 1.9 \times 10^{-4} $ $ 2.3 \times 10^{-3} $ $ 4.23 \times 10^{-3} $ $ 4.43 \times 10^{-3} $ $ 2.83 \times 10^{-3} $ $ 2.8 \times 10^{-3} $ $ 3.13 \times 10^{-3} $ $ 5.23 \times 10^{-3} $ $ 3.23 \times 10^{-3} $
    mPINNs实部 $ 8.93 \times 10^{-3} $ $ 1.1 \times 10^{-2} $ $ 1.2 \times 10^{-2} $ $ 1.1 \times 10^{-2} $ $ 8.53 \times 10^{-3} $ $ 5.93 \times 10^{-3} $ $ 3.53 \times 10^{-3} $ $ 1.93 \times 10^{-3} $ $ 1.33 \times 10^{-3} $
    INTA虚部 $ 3.53 \times 10^{-3} $ $ 2.33 \times 10^{-3} $ $ 2.63 \times 10^{-3} $ $ 8.7 \times 10^{-4} $ $ 2.3 \times 10^{-4} $ $ 1.83 \times 10^{-3} $ $ 2.43 \times 10^{-3} $ $ 3.83 \times 10^{-3} $ $ 1.83 \times 10^{-3} $
    mPINNs虚部 $ 2.43 \times 10^{-3} $ $ 6.23 \times 10^{-3} $ $ 1.0 \times 10^{-2} $ $ 1.6 \times 10^{-2} $ $ 1.6 \times 10^{-2} $ $ 1.6 \times 10^{-2} $ $ 1.5 \times 10^{-2} $ $ 1.23 \times 10^{-2} $ $ 7.13 \times 10^{-3} $
    DownLoad: CSV
  • [1]

    Liu Y P, Gao Y T, Wei G M 2012 Phys. A Stat. Mech. Appl. 391 535Google Scholar

    [2]

    Uthayakumar A, Han Y G, Lee S B 2006 Chaos Solitons Fractals 29 916Google Scholar

    [3]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [4]

    El-Ganainy R, Makris K G, Christodoulides D N, Musslimani Z H 2007 Opt. Lett. 32 2632Google Scholar

    [5]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [6]

    Baudouin L, Puel J P 2002 Inverse Probl. 18 1537Google Scholar

    [7]

    Avdonin S A, Mikhaylov A S, Mikhaylov V S, Park J C 2021 Inverse Problems 37 035002Google Scholar

    [8]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [9]

    Zhou Z, Yan Z 2021 Phys. Lett. A 387 127010Google Scholar

    [10]

    Li J, Li B 2021 Commun. Theor. Phys. 73 125001Google Scholar

    [11]

    张坤 2024 理论数学 14 117Google Scholar

    Zhang K 2024 Pure Math. 14 117Google Scholar

    [12]

    Qiu W X, Geng K L, Zhu B W, Liu W, Li J T, Dai C Q 2024 Nonlinear Dyn. 112 10215Google Scholar

    [13]

    Song J, Yan Z 2023 Physica D 448 133729Google Scholar

    [14]

    Wang S, Wang H, Perdikaris P 2021 Comput. Methods Appl. Mech. Eng. 384 113938Google Scholar

    [15]

    Liu Y, Wu R, Jiang Y 2024 J. Comput. Phys. 518 113341Google Scholar

    [16]

    Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021 Nat. Rev. Phys. 3 422Google Scholar

    [17]

    Lu L, Meng X, Mao Z, Karniadakis G E 2021 SIAM Rev. 63 208Google Scholar

    [18]

    孙志忠 2022 偏微分方程数值解法 (第三版) (北京: 科学出版社) 第 320—349页

    Sun Z Z 2022 Numerical Solution of Partial Differential Equations. (3rd Ed.) (Beijing: Science Press) pp320–349

    [19]

    Dembo R S, Eisenstat S C, Steihaug T 1982 SIAM J. Numer. Anal. 19 400Google Scholar

    [20]

    Göksel İ, Antar N, Bakırtaş İ 2015 Opt. Commun. 354 277Google Scholar

  • [1] Chen Tao, Jiang Pu-Qing. Unraveling intrinsic relationship of thermal properties in thermoreflectance experiments. Acta Physica Sinica, 2024, 73(23): 230202. doi: 10.7498/aps.73.20241369
    [2] Xie Guo-Da, Pan Pan, Ren Xin-Gang, Feng Nai-Xing, Fang Ming, Li Ying-Song, Huang Zhi-Xiang. Application of high-order SF-SFDTD scheme to solving a time-dependent Schrödinger equation. Acta Physica Sinica, 2024, 73(3): 030201. doi: 10.7498/aps.73.20230771
    [3] Wang Peng-Ju, Fan Jun-Yu, Su Yan, Zhao Ji-Jun. Energetic potential of hexogen constructed by machine learning. Acta Physica Sinica, 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [4] Zhang Hai-Feng, Wang Wen-Xu. Complex system reconstruction. Acta Physica Sinica, 2020, 69(8): 088906. doi: 10.7498/aps.69.20200001
    [5] Sun Shuai-Ling, Leng Yong-Gang, Zhang Yu-Yang, Su Xu-Kun, Fan Sheng-Bo. Analysis of magnetic force and potential energy function of multi-stable cantilever beam with two magnets. Acta Physica Sinica, 2020, 69(14): 140502. doi: 10.7498/aps.69.20191981
    [6] Ge Wei-Kuan, Xue Yun, Lou Zhi-Mei. Generalized gradient representation of holonomic mechanical systems. Acta Physica Sinica, 2014, 63(11): 110202. doi: 10.7498/aps.63.110202
    [7] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [8] Huang Qi-Can, Hu Shu-Juan, Qiu Chun-Yu, Li Kuan, Yu Hai-Peng, Chou Ji-Fan. Numerical model error estiamtion by derivative-free optimization method. Acta Physica Sinica, 2014, 63(14): 149203. doi: 10.7498/aps.63.149203
    [9] Zhou Nai-Gen, Hu Qiu-Fa, Xu Wen-Xiang, Li Ke, Zhou Lang. A comparative study of different potentials for molecular dynamics simulations of melting process of silicon. Acta Physica Sinica, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [10] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [11] Shen Jing, Sha Wei E. I., Huang Zhi-Xiang, Chen Ming-Sheng, Wu Xian-Liang. High-oder symplectic FDTD scheme for solving time-dependent Schrdinger equation. Acta Physica Sinica, 2012, 61(19): 190202. doi: 10.7498/aps.61.190202
    [12] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [13] Liu Kui, Ding Hong-Lin, Zhang Xian-Gao, Yu Lin-Wei, Huang Xin-Fan, Chen Kun-Ji. Simulation of a triple-gate single electron FET memory with a quantum dot floating gate and a quantum wire channel. Acta Physica Sinica, 2008, 57(11): 7052-7056. doi: 10.7498/aps.57.7052
    [14] Liu Dong, Wang Fei, Huang Qun-Xing, Yan Jian-Hua, Chi Yong, Cen Ke-Fa. Fast reconstruction of two-dimensional temperature distribution in participating medium. Acta Physica Sinica, 2008, 57(8): 4812-4816. doi: 10.7498/aps.57.4812
    [15] Li Jiang-Fan, Shan Shu-Min, Yang Jian-Kun, Jiang Zong-Fu. An explicit analytical solution of the Schr?dinger equation for a detuned quantum frequency conversion system. Acta Physica Sinica, 2007, 56(10): 5597-5601. doi: 10.7498/aps.56.5597
    [16] Xin Guo-Feng, Chen Guo-Ying, Hua Ji-Zhen, Zhao Run, Kang Zhi-Long, Feng Rong-Zhu, An Zhen-Feng. Wavelength design for the 941nm high output power strained single-quantum-well semiconductor lasers. Acta Physica Sinica, 2004, 53(5): 1293-1298. doi: 10.7498/aps.53.1293
    [17] Zhang Jie-Fang, Xu Chang-Zhi, He Bao-Gang. The variable separation approach and study on solving the variable-coefficient nonlinear Schr?dinger equation. Acta Physica Sinica, 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [18] Li Pei-Xian, Hao Yue, Fan Long, Zhang Jin-Cheng, Zhang Jin-Feng, Zhang Xiao-Ju. AlGaN/GaN heterojunction wavefunction half analytic model based on quantum distu rbance. Acta Physica Sinica, 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
    [19] You Yun-Xiang, Miu Guo-Peng. . Acta Physica Sinica, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [20] LIU JIAN-BO, CAI XI-PING. A MACROSCOPICAL SIMULATION SOLUTION TO THE ONE-DIMENSIONAL STATIONARY STATE SCHRDINGER EQUATION. Acta Physica Sinica, 2001, 50(5): 820-824. doi: 10.7498/aps.50.820
Metrics
  • Abstract views:  310
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  27 January 2025
  • Accepted Date:  19 April 2025
  • Available Online:  10 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回