Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation analysis of effectiveness of deep dielectric charging in ground tests

LONG Mingbing ZHU Xiang LI Hongwei ZHAO Xu ZHANG Wanying TAO Mengze HAN Jianwei

Citation:

Simulation analysis of effectiveness of deep dielectric charging in ground tests

LONG Mingbing, ZHU Xiang, LI Hongwei, ZHAO Xu, ZHANG Wanying, TAO Mengze, HAN Jianwei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The deep charge-discharge effect in dielectrics induced by high-energy electrons is a major cause of spacecraft anomalies and failures in geosynchronous orbit (GEO) and medium earth orbit (MEO). To evaluate the in-orbit deep charging and discharging behavior of satellite dielectric materials, ground-based simulation testing is essential. However, due to limitations in ground test conditions, it is necessary to conduct a comprehensive analysis of the effectiveness of such evaluations. This paper introduces the key physical model of deep dielectric charging, taking a grounded planar dielectric with an irradiated inner surface as a representative case to analyze the internal charging process and the evolution of critical physical quantities governing deep charging phenomena. In this study, the DICTAT simulation tool is used to investigate the charging effects of three distinct electron sources: strontium-90 decay electrons, monoenergetic electron beams, and GEO ambient electrons. In ground-based simulations, researchers typically use monoenergetic or continuous-spectrum electron beams with flux intensities on the order of pA·cm–2 to irradiate test specimens with varying shielding configurations, dielectric thicknesses, and material compositions, aiming to replicate in-situ deep charging phenomena and assess associated risks. Therefore, the simulations are conducted under electron flux levels representative of GEO orbital conditions. This study focuses on polytetrafluoroethylene (PTFE) dielectric samples under three typical spacecraft shielding configurations: 1) externally mounted on the cabin surface, 2) housed inside the pressurized cabin, and 3) embedded within standalone electronic subsystems, while systematically incorporating variations in dielectric thickness. The results show that the disparity between the electron flux deposited within the dielectric bulk and the flux at dielectric interfaces critically governs the severity of charging under varying irradiation conditions. Two key findings emerge as follows. 1) Discrepancies in electron energy spectra and their influence: the differences in energy spectra between the test electron source and the actual space environment lead to variations in deposited electron flux across different aluminum shielding thicknesses and dielectric depths. This discrepancy influences the equilibrium charging state by changing the current density and conductivity in sub-region-n (the dielectric-ground interface), potentially resulting in either underestimation or overestimation of deep charging effects compared with true space conditions. 2) Effectiveness of different electron sources for simulation: strontium-based sources (e.g. Sr-90 β-decay spectra) effectively replicate the internal charging behavior of teflon (PTFE) materials on cabin exteriors and inside pressurized compartments under GEO-like electron flux conditions. 0.5 MeV monoenergetic electron beams are suitable for simulating surface dielectric charging on cabin exteriors. However, higher-energy monoenergetic beams exhibit limited applicability at varying dielectric thicknesses. Despite the similar flux intensity used in the tests compared with that in the actual space environment, the differences in energy distribution between the test beams and space electrons can lead to underestimation or overestimation of the charging effects. Based on the simulation results, this work provides recommendations for selecting appropriate test beam parameters under different shielding conditions to improve the accuracy of ground-based evaluations of in-orbit deep dielectric charging.
  • 图 1  电子在平板介质结构中沉积示意

    Figure 1.  Demonstration of electron deposition in flat dielectric

    图 2  GEO恶劣环境电子能谱和90Sr-90Y放射源电子能谱分布和不同能量电子对应Al和Teflon中射程

    Figure 2.  Electron energy spectrum of GEO harsh environment and electron distribution of 90Sr-90Y radioactive source and electrons of different energies correspond to Al and Teflon intermediate ranges.

    图 3  Teflon在不同铝屏蔽下相同空间束流强度的各电子能谱辐射充电效果与介质厚度关系 (a) 无屏蔽; (b) 0.8 mm铝屏蔽; (c) 3.8 mm铝屏蔽

    Figure 3.  Relation between the radiation charging effect of each electron energy spectrum of Teflon with the same spatial beam intensity and the thickness of the medium under different aluminum shielding: (a) No shielding; (b) 0.8 mm aluminium shield; (c) 3.8 mm aluminum shield.

    图 4  无屏蔽Teflon在相同空间束流强度的各电子能谱辐射下亚区域n电流密度和电阻率与介质厚度关系 (a) 流动电流密度; (b) 总电阻率

    Figure 4.  Relationship between sub-region current density and resistivity and dielectric thickness of unshielded Teflon under different electron energy spectrum radiation with the same spatial beam intensity: (a) Flow current density; (b) total resistivity.

    图 5  三种单能束电子条件与GEO环境电子辐射舱表、舱内和单机内Teflon的充电效果对比

    Figure 5.  Comparison of the charging effects of Teflon on the surface, inside the cabin, and inside the single machine under three single-energy beam electron conditions and the GEO environmental electron radiation cabin.

    图 6  单能束电子条件与GEO环境电子辐射8种介质材料的充电效果对比关系 (a) 无屏蔽; (b) 0.8 mm铝屏蔽; (c) 3.8 mm铝屏蔽

    Figure 6.  Comparison of charging effects of eight dielectric materials under single-energy beam electron conditions and GEO environmental electron radiation: (a) No shielding; (b) 0.8 mm aluminium shield; (c) 3.8 mm aluminum shield.

    表 1  介质材料的物理性能参数

    Table 1.  Physical performance parameters of the dielectric materials.

    电介质TeflonMylarPlexiglasCmxglassPolytheneExpoyEtfeKapton
    kp/(Ω–1·cm–1·rad–1·s)2.0×10–163.0×10–202.2×10–171.0×10–164.5×10–166.5×10–162.0×10–161.0×10–15
    σ/(Ω–1·m–1)1.0×10–161.0×10–161.0×10–151.0×10–131.0×10–142.5×10–151.0×10–161.0×10–15
    Δ0.70.81.01.00.81.00.80.6
    ρ/(g·cm–3)2.171.41.22.610.931.51.71.42
    εr/(F·m–1)2.153.04.03.82.263.62.53.45
    DownLoad: CSV
  • [1]

    Fennell J F, Koons H C, Roeder J L, Blake J B 2001 Spacecraft Charging: Observations and Relationship to Satellite Anomalies Aerospace Report TR-2001(8570)-5 (El Segundo CA: The Aerospace Corporation) pp2—6

    [2]

    黄建国, 韩建伟 2010 物理学报 59 2907Google Scholar

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907Google Scholar

    [3]

    刘尚合, 胡小锋, 原青云, 谢喜宁 2019 高电压技术 45 2108

    Liu S H, Hu X F, Yuan Q Y, Xie X N 2019 High Volt. Eng. 45 2108

    [4]

    Wei D J, Zhu L Y, Wu J W, Tong Z A, Xia S W, Lin J Y 2023 IEEE Trans. Plasma Sci. 51 3384Google Scholar

    [5]

    Fennell J F, Koons H C, Chen M W, Blake J B 2000 IEEE Trans. Plasma Sci. 28 2029Google Scholar

    [6]

    Garrett H B, Whittlesey A C 2012 Guide to Mitigating Spacecraft Charging Effects (Hoboken: Wiley) pp25—35

    [7]

    Yu X Q, Chen H F, Zong Q G, Wang J Z, Shi W H, Zou H, Zou J Q, Zhong W Y, Chen Z, Shao S P, Jia X H 2016 IEEE Trans. Nucl. Sci. 63 1306Google Scholar

    [8]

    韩建伟, 张振龙, 黄建国, 全荣辉, 李小银 2007 航天器环境工程 24 47

    Han J W, Zhang Z L, Huang J G, Quan R H, Li X Y 2007 Spacecraft Environ. Eng. 24 47

    [9]

    张振龙, 韩建伟, 全荣辉, 安广朋 2009 航天器环境工程 26 210

    Zhang Z L, Han J W, Quan R H, An G P 2009 Spacecraft Environ. Eng. 26 210

    [10]

    Paulmier T, Dirassen B, Payan D, Van Eesbeek M 2009 IEEE Trans. Dielectr. Electr. Insul. 16 682Google Scholar

    [11]

    刘继奎, 张可墨, 柳青, 王松, 王斌, 国锋 2018 高电压技术 44 864

    Liu J K, Zhang K M, Liu Q, Wang S, Wang B, Guo F 2018 High Volt. Eng. 44 864

    [12]

    Molinie P, Dessante P, Hanna R, Paulmier T, Dirassen B, Belhaj M, Payan D, Balcon N 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1215Google Scholar

    [13]

    陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978Google Scholar

    Chen W, Yang H L, Guo X Q, Yao Zhi B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Sci. Bull. 62 978Google Scholar

    [14]

    Sorensen J, Rodgers D J, Ryden K A, Latham P M, Wrenn G L, Levy L, Panabiere G 2000 IEEE Trans. Nucl. Sci. 47 491Google Scholar

    [15]

    黄建国, 陈东 2004 物理学报 53 1611Google Scholar

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 1611Google Scholar

    [16]

    黄建国, 陈东 2004 地球物理学报 47 392Google Scholar

    Huang J G, Chen D 2004 Chin. J. Geophys. 47 392Google Scholar

    [17]

    Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551Google Scholar

    [18]

    SPENVIS (Space Environment Effects and Education System), ESA https://www.spenvis.oma.be/ [2025-2-17]

    [19]

    NASA Office of the Chief Engineer 2022 NASA-HDBK-4002B: Mitigating In-Space Charging Effects—A Guideline (Washington D. C. : NASA) pp37, 105

    [20]

    Weber K H 1963 Nucl. Instrum. Methods 25 261Google Scholar

    [21]

    Sørensen J 1996 Proceedings of the ESA Symposium on Environment Modelling for Space-Based Applications Noordwijk, Netherlands, June 10-12,1996 p129

    [22]

    Plis E A, Engelhart D P, Likar J, Hoffmann R C, Cooper R, Ferguson D 2018 J. Spacecr. Rockets 55 775Google Scholar

    [23]

    DuPont 2022 Kapton® Summary of Properties (Wilmington: DuPont) pp10—11

    [24]

    McAlees M 2000 Raw Material Challenges and New Technology Innovations in Pressure Sensitive Tape (Circleville: DuPont) pp294—298

  • [1] Yuan Qing-Yun, Wang Song. A new charging model for exposed dielectric of spacecraft. Acta Physica Sinica, doi: 10.7498/aps.67.20180532
    [2] Wang Song, Wu Zhan-Cheng, Tang Xiao-Jin, Sun Yong-Wei, Yi Zhong. Study on temperature and electric field dependence of conductivity in polyimide. Acta Physica Sinica, doi: 10.7498/aps.65.025201
    [3] Liu Jun-Yan, Wang Fei, Wang Xiao-Chun, Ma Ying, Wang Yang. Simulation and experimental investigation of tooth tissue in photothermal radiometry dynamic response induced by modluated laser. Acta Physica Sinica, doi: 10.7498/aps.64.194203
    [4] Li Guo-Chang, Min Dao-Min, Li Sheng-Tao, Zheng Xiao-Quan, Ru Jia-Sheng. Research of deep dielectric charging characteristics of polytetrafluoroethene irradiated by energetic electrons. Acta Physica Sinica, doi: 10.7498/aps.63.209401
    [5] Han Qing-Bang, Xu Shan, Xie Zu-Feng, Ge Rui, Wang Xi, Zhao Sheng-Yong, Zhu Chang-Ping. Analysis and experimental verification of the relation between Scholte wave velocity and sediment containing two-phase fluid properties. Acta Physica Sinica, doi: 10.7498/aps.62.194301
    [6] Tang Tian-Tian, Zhang Chao-Min, Zhang Min. Photodetached electron flux of H- in magnetic field near a metal surface. Acta Physica Sinica, doi: 10.7498/aps.62.123201
    [7] Li Sheng-Tao, Li Guo-Chang, Min Dao-Min, Zhao Ni. Influence of radiation electron energy on deep dielectric charging characteristics of low density polyethylene. Acta Physica Sinica, doi: 10.7498/aps.62.059401
    [8] Zhang Song-Peng, Zhang Xiang-Jun, Tian Yu, Meng Yong-Gang. A quantitative model and experimental investigations of wall shear stress between solid and gaseous fluid using liquid crystal coating. Acta Physica Sinica, doi: 10.7498/aps.61.234702
    [9] Zou Hui, Jing Hong-Yang, Wamg Zhi-Ping, Guan Qing-Feng. The vacancy defect clusters in polycrystalline pure nickle induced by high-current pulsed electron beam. Acta Physica Sinica, doi: 10.7498/aps.59.6384
    [10] Du Guang-Xing, Qian Bao-Liang. Propagation of the intense relativistic sheet electron beam with a quasi-rectangular cross section. Acta Physica Sinica, doi: 10.7498/aps.59.4626
    [11] Liu Jing, Shu Ting, Li Zhi-Qiang. Further theoretical study on laminar-flow equilibria in magnetically focused relativistic electron beams. Acta Physica Sinica, doi: 10.7498/aps.59.1895
    [12] Guan Qing-Feng, Cheng Du-Qing, Qiu Dong-Hua, Zhu Jian, Wang Xue-Tao, Cheng Xiu-Wei. The vacancy defect clusters in polycrystalline pure aluminum induced by high-current pulsed electron beam. Acta Physica Sinica, doi: 10.7498/aps.58.4846
    [13] Cheng Du-Qing, Guan Qing-Feng, Zhu Jian, Qiu Dong-Hua, Cheng Xiu-Wei, Wang Xue-Tao. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam. Acta Physica Sinica, doi: 10.7498/aps.58.7300
    [14] Quan Rong-Hui, Zhang Zhen-Long, Han Jian-Wei, Huang Jian-Guo, Yan Xiao-Juan. Phenomenon of deep charging in polymer under electron beam irradiation. Acta Physica Sinica, doi: 10.7498/aps.58.1205
    [15] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, doi: 10.7498/aps.58.684
    [16] Chen Yan-Ping, Wang Chuan-Bing, Zhou Guo-Cheng. Maser instability driven by an electron beam with losscone-beam distribution. Acta Physica Sinica, doi: 10.7498/aps.54.3221
    [17] Hu Min, Zhu Da-Jun, Liu Sheng-Gang. Longitudinal self-modulation of an intense relativistic electron beam in a two-cavity system. Acta Physica Sinica, doi: 10.7498/aps.54.2633
    [18] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, doi: 10.7498/aps.54.3927
    [19] Huang Jian-Guo, Chen Dong. A study of deep dielectric charging on satellites for different grounding patterns. Acta Physica Sinica, doi: 10.7498/aps.53.1611
    [20] Huang Jian-Guo, Chen Dong. A study of characteristics for deep dielectric charging on satellites. Acta Physica Sinica, doi: 10.7498/aps.53.961
Metrics
  • Abstract views:  206
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2025
  • Accepted Date:  24 April 2025
  • Available Online:  09 May 2025

/

返回文章
返回