Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of surface wave dispersion equations for viscoelastic non-Newtonian fluids

LI Haoxuan SUN Haosen ZHAO Guanjia

Citation:

Study of surface wave dispersion equations for viscoelastic non-Newtonian fluids

LI Haoxuan, SUN Haosen, ZHAO Guanjia
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The study of surface wave dispersion equations in viscoelastic non-Newtonian fluids is the foundation for characterizing the thermophysical properties by using surface light scattering techniques. Unlike Newtonian fluids, non-Newtonian systems have the complex viscosity with nonlinear frequency behavior and stress relaxation time-dependent behavior. Consequently, the development of constitutive models capable of accurately capturing these complex viscosity characteristics is critical. Based on the multi-relaxation-time Maxwell framework, this work establishes a method of explicitly solving the surface wave dispersion equation through modal decomposition of the total power spectrum, which can systematically analyze the influence of relaxation time parameters on surface wave mode distributions. This study quantitatively correlates the number of relaxation time parameters in the constitutive model with the nonlinear response capacity of the system. These findings provide a theoretical foundation for precisely determining the surface wave characteristics in non-Newtonian fluids and advance the application of surface light scattering method to the measurement of thermophysical properties in viscoelastic fluid systems.Based on a multi-relaxation-time Maxwell model, the complex viscosity is formulated by combining multiple stress relaxation time. Utilizing non-depersonalization and polynomial decomposition, we derive the governing equations for surface wave dispersion and the associated power spectrum. By systematically varying the parameter n and dimensionless variables, the roots of the dispersion equations are analyzed to study surface wave modes—including capillary, elastic waves, and overdamped modes—and their spectral signatures. A partial fraction expansion method is employed to decouple the total power spectrum into explicit modal contributions. This method demonstrates how the relaxation parameters determine the distribution of surface wave modes, thereby clarifying the inherent multimodal relaxation dynamics of complex fluids.The proposed framework extends the classical Maxwell model by integrating multiple relaxation times, with a focus on surface wave dispersion behavior and spectral response. Theoretically, it quantifies the influence of relaxation time on the number and topological properties of roots in the complex plane. Furthermore, by correlating the dynamic behaviors of these roots with physical constraints, this study establishes criteria for the existence of different surface wave modes and evaluates their relative contributions to the power spectrum.When the elastic modulus is low and approaches Newtonian fluid behavior, increasing the number of relaxation time parameters n will increase the critical threshold for surface wave mode transition. This simultaneously generates n purely imaginary roots corresponding to overdamped modes. At higher elastic modulus, the critical threshold vanishes and is replaced by an oscillation-dominated regime requiring power spectrum analysis to solve surface wave dynamics problems. Larger n values reduce the spatial extent of this oscillatory regime.In systems with low elastic modulus, n mainly modulates the peak amplitudes in the power spectrum rather than changing its overall shape. Near the oscillation region, the power spectrum clearly distinguishes the contributions from capillary waves, elastic waves, and overdamped modes. Increasing n can enhance the strengths of elasticity and overdamped mode while suppressing the dominance of capillary wave. By incorporating additional relaxation time, the model gains enhance the resolution of multimodal relaxation dynamics, enabling precise characterization of viscoelasticity in complex non-Newtonian fluids.We improve the complex viscosity model by increasing the number of stress relaxation time parameters n. Through the theoretical analysis of parameter variations under different conditions, the surface wave characteristics of non-Newtonian viscoelastic fluids are systematically investigated. The main conclusions are shown below. First, increasing the number of relaxation time parameters n will increase the number of roots in the dispersion equation, introducing additional relaxation modes manifested as low-frequency overdamped behavior. Second, increasing stress relaxation time τ will induce a critical oscillation regime, at which point power spectrum analysis is required for surface wave dynamics. Increasing n can reduce the spatial extent of this regime or even enables its complete avoidance. Third, under identical parameters, higher n suppresses surface tension-driven capillary wave intensity while enhancing elastic wave dominance. Variations in n quantitatively reflect the viscoelastic heterogeneity of polymer networks. Fourth, selecting appropriate n values can tailor the ability of model to resolve specific relaxation modes, making it suitable for different viscoelastic non-Newtonian fluids.
  • 图 1  $\overline \tau $ = 0.1时, 不同n下色散方程的解与$\overline \sigma $关系 (a) n = 2; (b) n = 3; (c) n = 4; 其中${\overline \varOmega _{\text{c}}}$表示毛细波c的无量纲频率, ${\overline \varGamma _{\text{c}}}$表示毛细波c的无量纲阻尼率, $ {\overline \varGamma _{\text{s}}} $表示慢波s的无量纲阻尼率, ${\overline \varGamma _{\text{f}}}$表示快波f的无量纲阻尼率, ${\overline \varGamma _1}$—${\overline \varGamma _4}$表示纯虚数根

    Figure 1.  Solution of the dispersion equation as a function of $\overline \sigma $ for different values of n: (a) n = 2; (b) n = 3; (c) n = 4; where ${\overline \varOmega _{\text{c}}}$ represents the dimensionless frequency of capillary wave c, ${\overline \varGamma _{\text{c}}}$represents the dimensionless damping rate of capillary wave c, $ {\overline \varGamma _{\text{s}}} $ represents the dimensionless damping rate of slow wave s, ${\overline \varGamma _{\text{f}}}$ represents the dimensionless damping rate of fast wave f, ${\overline \varGamma _1}$–${\overline \varGamma _4}$ represent the pure imaginary root.

    图 2  $\overline \tau $ = 1.0和10.0时, 不同n下色散方程的解与$\overline \sigma $的关系 (a) n = 2, $\overline \tau $ = 1.0; (b) n = 3, $\overline \tau $ = 1.0; (c) n = 4, $\overline \tau $ = 1.0; (d) n = 2,$\overline \tau $ = 10.0; (e) n = 3, $\overline \tau $ = 10.0; (f) n = 4, $\overline \tau $ = 10.0; 其中${\overline \varOmega _{\text{r}}}$表示毛细波r的无量纲频率, ${\overline \varGamma _{\text{r}}}$表示毛细波r的无量纲阻尼率

    Figure 2.  Solution of the dispersion equation as a function of $\overline \sigma $ for varying parameters: (a) n = 2, $\overline \tau $ = 1.0; (b) n = 3, $\overline \tau $ = 1.0; (c) n = 4, $\overline \tau $ = 1.0; (d) n = 2, $\overline \tau $ = 10.0; (e) n = 3, $\overline \tau $ = 10.0; (f) n = 4, $\overline \tau $ = 10.0; where ${\overline \varOmega _{\text{r}}}$ represents the dimensionless frequency of capillary wave r, ${\overline \varGamma _{\text{r}}}$ represents the dimensionless damping rate of capillary waver.

    图 3  $\overline \sigma $ = 10.0, $\overline \tau $ = 0.1时, 不同n下的功率谱

    Figure 3.  Power spectrum for various n at $\overline \sigma $ = 10.0, $\overline \tau $ = 0.1

    图 4  $\overline \sigma $ = 1.5, $\overline \tau $ = 1.0时, 不同n下的功率谱及其分解 (a) n = 2; (b) n = 3; (c) n = 4

    Figure 4.  Power spectrum and its spectral decomposition for various n at $\overline \sigma $ = 1.5 and $\overline \tau $ = 1.0: (a) n = 2; (b) n = 3; (c) n = 4.

    图 5  $\overline \sigma $ = 0.3, $\overline \tau $ = 10.0时, 不同n下的功率谱及其分解 (a) n = 2; (b) n = 3; (c) n = 4

    Figure 5.  Power spectrum and its spectral decomposition for various n at $\overline \sigma $ = 0.3 and $\overline \tau $ = 10.0: (a) n = 2; (b) n = 3; (c) n = 4.

    图 6  $\overline \sigma $ = 0.1, $\overline \tau $ = 10.0时, 不同n下的功率谱及其分解 (a) n = 2; (b) n = 3; (c) n = 4

    Figure 6.  Power spectrum and its spectral decomposition for various n at $\overline \sigma $ = 0.1 and $\overline \tau $ = 10.0: (a) n = 2; (b) n = 3; (c) n = 4.

  • [1]

    Morris B A 2017 The Science and Technology of Flexible Packaging (Oxford, UK: William Andrew) pp121–147

    [2]

    Lanzaro A, Yuan X F 2022 Micromachines 13 256Google Scholar

    [3]

    刘西洋, 付涛涛, 朱春英, 马友光 2021 化工学报 72 772

    Liu X Y, Fu T T, Zhu C Y, Ma Y G 2021 CIESC J. 72 772

    [4]

    邵鸿飞, 高岩立, 任万杰, 李艳玲, 刘元俊, 刘忠民 2019 化学分析计量 28 6Google Scholar

    Shao H F, Gao Y L, Ren W J, Li Y L, Liu Y J, Liu Z M 2019 Chem. Anal. Meterage 28 6Google Scholar

    [5]

    Levich V G, Spalding D B 1962 Physicochemical Hydrodynamics (New Jersey: Prentice-Hall) pp591–599

    [6]

    Kadanoff L P, Martin P C 1963 Ann. Phys. 24 419Google Scholar

    [7]

    Harden J L, Pleiner H, Pincus P A 1989 Langmuir 5 1436Google Scholar

    [8]

    Harden J L, Pleiner H, Pincus P A 1991 J. Chem. Phys. 94 5208Google Scholar

    [9]

    Ohmasa Y, Hoshino T, Osada R, Yao M 2009 Phys. Rev. E 79 061601

    [10]

    Ohmasa Y, Yao M 2011 Phys. Rev. E 83 031605

    [11]

    Cao B H, Kim M W, Cummins H Z 1995 J. Chem. Phys. 102 9375Google Scholar

    [12]

    Cummins H Z, Pike E R 2013 Photon Correlation Spectroscopy and Velocimetry (Cham: Springer Science & Business Media) pp515–516

    [13]

    赵贯甲 2013博士学位论文 (西安: 西安交通大学)

    Zhao G J 2013 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University

    [14]

    赵贯甲, 张兴, 尹建国, 马素霞 2022 光学学报 42 2212001Google Scholar

    Zhao G J, Zhang X, Yin J G, Ma S X 2022 Acta Opt. Sin. 42 2212001Google Scholar

    [15]

    Jäckle J, Kawasaki K 1995 J. Phys. : Condens. Matter 7 4351Google Scholar

    [16]

    Langevin D 1992 Light Scattering by Liquid Surfaces and Complementary Techniques (New York: Marcel Dekker) pp49-51

    [17]

    Kubo R 1966 Rep. Prog. Phys. 29 255Google Scholar

    [18]

    Jäckle J 1998 J. Phys. : Condens. Matter 10 7121Google Scholar

    [19]

    Wang C H, Huang Q R 1997 J. Chem. Phys. 107 5898Google Scholar

    [20]

    Zang D Y, Zhang Y J 2011 Sci. China Phys. Mech. Astron. 54 1587Google Scholar

    [21]

    Dorshow R B, Turkevich L A 1993 Phys. Rev. Lett. 70 2439Google Scholar

    [22]

    Hoshino T, Ohmasa Y, Osada R, Yao M 2008 Phys. Rev. E 78 061604

    [23]

    Ablowitz M J, Fokas A S 2003 Complex Variables: Introduction and Applications (Cambridge: Cambridge University Press) pp206-245

    [24]

    Huang Q R, Wang C H, Deng N J 1998 J. Chem. Phys. 108 3827Google Scholar

    [25]

    Huang Q R, Wang C H 1998 J. Chem. Phys. 109 6103Google Scholar

  • [1] Li Jia-Rui, Le Tao-Ran, Wei Hao-Yun, Li Yan. Non-contact viscoelasticity measurements based on impulsive stimulated Brillouin spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20231974
    [2] Sun Zong-Li, Kang Yan-Shuang, Zhang Jun-Xia. Volume viscosity of inhomogeneous fluids: a Maxwell relaxation model. Acta Physica Sinica, doi: 10.7498/aps.73.20231459
    [3] Zheng Suo-Sheng, Huang Yao, Zou Kun, Peng Yi-Tian. Numerical simulation of flow pattern for non-Newtonian flow in agitated thin film evaporator. Acta Physica Sinica, doi: 10.7498/aps.71.20211921
    [4] Yang Gang, Zheng Ting, Cheng Qi-Hao, Zhang Hui-Chen. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Physica Sinica, doi: 10.7498/aps.70.20202116
    [5] Zhang Ying, Zheng Yu, He Mao-Gang. Improvement of dynamic light scattering method for measurement of particle diameter and liquid viscosity. Acta Physica Sinica, doi: 10.7498/aps.67.20180271
    [6] Cao Miao-Miao, Liu Wen-Xin, Wang Yong, Zhu Jue-Yuan, Li Ke. High frequency characteristics of dielectric-loaded grating for terahertz Smith-Purcell radiation. Acta Physica Sinica, doi: 10.7498/aps.65.014101
    [7] Peng Miao-Juan, Liu Qian. Improved complex variable element-free Galerkin method for viscoelasticity problems. Acta Physica Sinica, doi: 10.7498/aps.63.180203
    [8] Cai Shan-Yong, Mei Lei, Peng Hu-Qing, Lu Da-Quan, Hu Wei. The analytical solution and stability of multipole surface soliton in nonlocal nonlinear medium. Acta Physica Sinica, doi: 10.7498/aps.61.154211
    [9] Mo Jia-Qi, Chen Xian-Feng. Approximate solution of solitary wave for a class of generalized nonlinear disturbed dispersive equation. Acta Physica Sinica, doi: 10.7498/aps.59.1403
    [10] Liu Man, Cheng Chuan-Fu, Song Hong-Sheng, Teng Shu-Yun, Liu Gui-Yuan. Phase singularities of speckle field produced by the scattering from Gaussian correlation random surfaces. Acta Physica Sinica, doi: 10.7498/aps.58.5376
    [11] Yin Jiu-Li, Tian Li-Xin. New exotic solitary waves in one type of nonlinear dispersive equations. Acta Physica Sinica, doi: 10.7498/aps.58.3632
    [12] Jiao Chong-Qing, Luo Ji-Run. Propagation of electromagnetic wave in a lossy cylindrical waveguide. Acta Physica Sinica, doi: 10.7498/aps.55.6360
    [13] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a tape helix slow wave structure filled with plasma. Acta Physica Sinica, doi: 10.7498/aps.55.3514
    [14] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a helical slow wave structure filled with magnetized plasma. Acta Physica Sinica, doi: 10.7498/aps.55.2397
    [15] Guo Yong-Cun, Zeng Yi-Shan, Lu De-Tang. The non-Newtonian fluid mathematical model for strata static temperature forecast. Acta Physica Sinica, doi: 10.7498/aps.54.802
    [16] JIANG YI-MIN. ON DIELECTRIC RELATION OF DISPERSIVE FLUID. Acta Physica Sinica, doi: 10.7498/aps.46.1332
    [17] HU WEN-ZHONG. THE UNIVERSAL DISPERSION EQUATIONS OF MSFVW AND MSBVW IN ARBITRARY MULTILAYER MAGNETIC STRUCTURE. Acta Physica Sinica, doi: 10.7498/aps.38.449
    [18] ZHANG CHENG-FU. ON THE RENORMALIZED DISPERSION EQUATION OF TURBULENT PLASMA. Acta Physica Sinica, doi: 10.7498/aps.35.300
    [19] LIU LIAN-SOU. COMPLEX ANGULAR MOMENTUM IN π-N SCATTERING. Acta Physica Sinica, doi: 10.7498/aps.21.1123
    [20] DAI YUAN-BEN. THE ANALYTICITY IN THE COMPLEX ANGULAR MOMENTUM VARIABLE OF THE S MATRIX ELEMENT FOR A CLASS OF NONLOCAL POTENTIALS. Acta Physica Sinica, doi: 10.7498/aps.20.947
Metrics
  • Abstract views:  354
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2025
  • Accepted Date:  20 June 2025
  • Available Online:  08 July 2025
  • /

    返回文章
    返回