Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on Surface Wave Dispersion Equations for Viscoelastic Non-Newtonian Fluids

Li Haoxuan Sun Haosen Zhao Guanjia

Citation:

Study on Surface Wave Dispersion Equations for Viscoelastic Non-Newtonian Fluids

Li Haoxuan, Sun Haosen, Zhao Guanjia
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Objective The investigation of surface wave dispersion equations in viscoelastic non-Newtonian fluids constitutes the fundamental basis for thermophysical property characterization using surface light scattering techniques. Unlike Newtonian fluids, the complex viscosity of non-Newtonian systems exhibits nonlinear frequency- and stress relaxation time-dependent behavior. Consequently, the development of constitutive models capable of accurately capturing these complex viscosity characteristics is critical. Building upon the multi-relaxation-time Maxwell framework, this work establishes an explicit solution for the surface wave dispersion equation through modal decomposition of the total power spectrum, enabling systematic analysis of the influence of relaxation time parameters on surface wave mode distributions. The study quantitatively correlates the number of relaxation time parameters in the constitutive model with the nonlinear response capacity of the system. These findings provide a theoretical foundation for precise determination of surface wave characteristics in non-Newtonian fluids and advance the application of surface light scattering methodologies for thermophysical property measurement in viscoelastic fluid systems.
    Methods Based on a multi-relaxation-time Maxwell model, the complex viscosity is formulated by incorporating multiple stress relaxation times. Utilizing non-depersonalization and polynomial decomposition, we derive the governing equations for surface wave dispersion and the associated power spectrum. By systematically varying the parameter n and dimensionless variables, the roots of the dispersion equations are analyzed to investigate surface wave modes—including capillary,elastic waves and overdamped modes—and their spectral signatures. A partial fraction expansion method is employed to decouple the total power spectrum into explicit modal contributions. This approach demonstrates how relaxation parameters dictate the distribution of surface wave modes, thereby elucidating the multimodal relaxation dynamics inherent to complex fluids.
    The proposed framework extends the classical Maxwell model through the integration of multiple relaxation times, with a focus on surface wave dispersion behavior and spectral responses. Theoretically, it quantifies the influence of relaxation times on both the number and topological properties of roots within the complex plane. Furthermore, by correlating the dynamic behavior of these roots with physical constraints, the study establishes criteria for the existence of distinct surface wave modes and evaluates their relative contributions to the power spectrum.
    Results and Discussions When the elastic modulus is low and approaches Newtonian fluid behavior, increasing the number of relaxation time parameters n, elevates the critical threshold for surface wave mode transitions. This simultaneously generates n purely imaginary roots corresponding to overdamped modes. At higher elastic modulus, the critical threshold vanishes, replaced by an oscillation-dominated regime requiring power spectrum analysis to resolve surface wave dynamics. Larger n values reduce the spatial extent of this oscillatory regime.
    In systems with low elastic modulus, n primarily modulates peak amplitudes in the power spectrum rather than altering its overall shape. Near the oscillation regime, the power spectrum distinctly resolves contributions from capillary waves, elastic waves, and overdamped modes. Increasing n enhances elastic and overdamped mode intensities while suppressing capillary wave dominance. By incorporating additional relaxation times, the model gains enhanced resolution of multimodal relaxation dynamics, enabling precise characterization of viscoelasticity in complex non-Newtonian fluids.
    Conclusions We improved the complex viscosity model by increasing the number of stress relaxation time parameters n. Through theoretical analysis of parameter variations under different conditions, the surface wave characteristics of non-Newtonian viscoelastic fluids were systematically investigated. The main conclusions are as follows: First, increasing the number of relaxation time parameters n augments the number of roots in the dispersion equation, introducing additional relaxation modes manifested as low-frequency overdamped behavior. Second, elevating stress relaxation time τ induces a critical oscillation regime, where surface wave dynamics require power spectrum analysis. Increasing n reduces the spatial extent of this regime or even enables its complete circumvention. Third, under identical parameters, higher n suppresses surface tension-driven capillary wave intensity while enhancing elastic wave dominance. Variations in n quantitatively reflect the viscoelastic heterogeneity of polymer networks. Fourth, selecting appropriate n values tailors the capacity of model to resolve specific relaxation modes, adapting it to diverse viscoelastic non-Newtonian fluids.
  • [1]

    Morris B A 2017 The Science and Technology of Flexible Packaging (Oxford, UK: William Andrew) pp121-147

    [2]

    Lanzaro A, Yuan X F 2022 Micromachines 13256

    [3]

    Liu X Y, Fu T T, Zhu C Y, Ma Y G 2021 CIESC J. 72772(in Chinese) [刘西洋,付涛涛,朱春英,马友光2021化工学报72772]

    [4]

    Shao H F, Gao Y L, Ren W J, Li Y L, Liu Y J, Liu Z M 2019 Chem. Anal. Meterage 286 (in Chinese) [邵鸿飞,高岩立,任万杰,李艳玲,刘元俊,刘忠民2019化学分析计量286]

    [5]

    Levich V G, Spalding D B 1962 Physicochemical Hydrodynamics (New Jersey: Prentice-Hall) pp591-599

    [6]

    Kadanoff L P, Martin P C 1963 Ann. Phys. 24419

    [7]

    Harden J L, Pleiner H, Pincus P A 1989 Langmuir 51436

    [8]

    Harden J L, Pleiner H, Pincus P A 1991 J. Chem. Phys. 945208

    [9]

    Ohmasa Y, Hoshino T, Osada R, Yao M 2009 Phys. Rev. E 79061601

    [10]

    Ohmasa Y, Yao M 2011 Phys. Rev. E 83031605

    [11]

    Cao B H, Kim M W, Cummins H Z 1995 J. Chem. Phys. 1029375

    [12]

    Cummins H Z, Pike E R 2013 Photon Correlation Spectroscopy and Velocimetry (Cham: Springer Science & Business Media) pp515-516

    [13]

    Zhao G J 2013 Development of Surface Laser Light Scattering Apparatus for Liquid Viscosity and Surface Tension Measurement and its Applications Ph.D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese) [赵贯甲2013表面光散射法黏度和表面张力实验系统研制及应用博士学位论文(西安: 西安交通大学)]

    [14]

    Zhao G J, Zhang X, Yin J G, Ma S X 2022 Acta Opt. Sin. 422212001(in Chinese) [赵贯甲,张兴,尹建国,马素霞2022光学学报422212001]

    [15]

    Jäckle J, Kawasaki K 1995 J. Phys.: Condens. Matter 74351

    [16]

    Langevin D 1992 Light Scattering by Liquid Surfaces and Complementary Techniques (New York: Marcel Dekker) pp49-51

    [17]

    Kubo R 1966 Rep. Prog. Phys. 29255

    [18]

    Jäckle J 1998 J. Phys.: Condens. Matter 107121

    [19]

    Wang C H, Huang Q R 1997 J. Chem. Phys. 1075898

    [20]

    Zang D Y, Zhang Y J 2011 Sci. China Phys. Mech. Astron. 541587

    [21]

    Dorshow R B, Turkevich L A 1993 Phys. Rev. Lett. 702439

    [22]

    Hoshino T, Ohmasa Y, Osada R, Yao M 2008 Phys. Rev. E 78061604

    [23]

    Ablowitz M J, Fokas A S 2003 Complex Variables: Introduction and Applications (Cambridge: Cambridge University Press) pp206-245

    [24]

    Huang Q R, Wang C H, Deng N J 1998 J. Chem. Phys. 1083827

    [25]

    Huang Q R, Wang C H 1998 J. Chem. Phys. 1096103

  • [1] Li Jia-Rui, Le Tao-Ran, Wei Hao-Yun, Li Yan. Non-contact viscoelasticity measurements based on impulsive stimulated Brillouin spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20231974
    [2] Sun Zong-Li, Kang Yan-Shuang, Zhang Jun-Xia. Volume viscosity of inhomogeneous fluids: a Maxwell relaxation model. Acta Physica Sinica, doi: 10.7498/aps.73.20231459
    [3] Zheng Suo-Sheng, Huang Yao, Zou Kun, Peng Yi-Tian. Numerical simulation of flow pattern for non-Newtonian flow in agitated thin film evaporator. Acta Physica Sinica, doi: 10.7498/aps.71.20211921
    [4] Yang Gang, Zheng Ting, Cheng Qi-Hao, Zhang Hui-Chen. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Physica Sinica, doi: 10.7498/aps.70.20202116
    [5] Zhang Ying, Zheng Yu, He Mao-Gang. Improvement of dynamic light scattering method for measurement of particle diameter and liquid viscosity. Acta Physica Sinica, doi: 10.7498/aps.67.20180271
    [6] Cao Miao-Miao, Liu Wen-Xin, Wang Yong, Zhu Jue-Yuan, Li Ke. High frequency characteristics of dielectric-loaded grating for terahertz Smith-Purcell radiation. Acta Physica Sinica, doi: 10.7498/aps.65.014101
    [7] Peng Miao-Juan, Liu Qian. Improved complex variable element-free Galerkin method for viscoelasticity problems. Acta Physica Sinica, doi: 10.7498/aps.63.180203
    [8] Cai Shan-Yong, Mei Lei, Peng Hu-Qing, Lu Da-Quan, Hu Wei. The analytical solution and stability of multipole surface soliton in nonlocal nonlinear medium. Acta Physica Sinica, doi: 10.7498/aps.61.154211
    [9] Mo Jia-Qi, Chen Xian-Feng. Approximate solution of solitary wave for a class of generalized nonlinear disturbed dispersive equation. Acta Physica Sinica, doi: 10.7498/aps.59.1403
    [10] Liu Man, Cheng Chuan-Fu, Song Hong-Sheng, Teng Shu-Yun, Liu Gui-Yuan. Phase singularities of speckle field produced by the scattering from Gaussian correlation random surfaces. Acta Physica Sinica, doi: 10.7498/aps.58.5376
    [11] Yin Jiu-Li, Tian Li-Xin. New exotic solitary waves in one type of nonlinear dispersive equations. Acta Physica Sinica, doi: 10.7498/aps.58.3632
    [12] Jiao Chong-Qing, Luo Ji-Run. Propagation of electromagnetic wave in a lossy cylindrical waveguide. Acta Physica Sinica, doi: 10.7498/aps.55.6360
    [13] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a tape helix slow wave structure filled with plasma. Acta Physica Sinica, doi: 10.7498/aps.55.3514
    [14] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a helical slow wave structure filled with magnetized plasma. Acta Physica Sinica, doi: 10.7498/aps.55.2397
    [15] Guo Yong-Cun, Zeng Yi-Shan, Lu De-Tang. The non-Newtonian fluid mathematical model for strata static temperature forecast. Acta Physica Sinica, doi: 10.7498/aps.54.802
    [16] JIANG YI-MIN. ON DIELECTRIC RELATION OF DISPERSIVE FLUID. Acta Physica Sinica, doi: 10.7498/aps.46.1332
    [17] HU WEN-ZHONG. THE UNIVERSAL DISPERSION EQUATIONS OF MSFVW AND MSBVW IN ARBITRARY MULTILAYER MAGNETIC STRUCTURE. Acta Physica Sinica, doi: 10.7498/aps.38.449
    [18] ZHANG CHENG-FU. ON THE RENORMALIZED DISPERSION EQUATION OF TURBULENT PLASMA. Acta Physica Sinica, doi: 10.7498/aps.35.300
    [19] LIU LIAN-SOU. COMPLEX ANGULAR MOMENTUM IN π-N SCATTERING. Acta Physica Sinica, doi: 10.7498/aps.21.1123
    [20] DAI YUAN-BEN. THE ANALYTICITY IN THE COMPLEX ANGULAR MOMENTUM VARIABLE OF THE S MATRIX ELEMENT FOR A CLASS OF NONLOCAL POTENTIALS. Acta Physica Sinica, doi: 10.7498/aps.20.947
Metrics
  • Abstract views:  11
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  08 July 2025
  • /

    返回文章
    返回