-
The magnetized coaxial gun is an efficient plasma injection device with significant applications in fusion fueling, astrophysical jet simulation, and magnetic reconnection studies. In this work, three typical discharge regions, i.e. spheromak region, diffusive region, and jet region, are observed through high-speed imaging and magnetic field measurements. The dynamic characteristics of the plasma in each region are systematically investigated. Based on ideal magnetohydrodynamic (MHD) theory, the magnetic field configurations, rotational behavior, and axial motion mechanisms of the plasma in different regions analyzed in detail. The results show that in the spheromak region, the plasma reaches a Taylor-relaxed state, exhibiting uniform rotation and forming a stable compact torus (CT) structure. In the diffusive region, a relatively strong bias magnetic field leads to faster rotation, enhancing centrifugal force, and consequently, enhancing radial diffusion. In the jet region, due to the weaker bias field, the plasma accumulates at the end of the inner electrode, exhibiting a clear pinch effect and forming a jet with axial instability. These findings not only deepen the understanding of the discharge physics of magnetized coaxial guns but also provide valuable experimental and theoretical support for numerically simulating and developing efficient plasma sources.
[1] 漆亮文 2022 博士学位论文(大连: 大连理工大学)
Qi L W 2022 Ph. D. Dissertation (Dalian: Dalian University of Technology
[2] Dong Q L, Kong D F, Wu X H, Ye Y, Yang K, Lan T, Chen C, Wu J, Zhang S, Mao W Z, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Bai W, Yang D Z, Wen F, Zi P F, Li L, Hu G H, Zhang S B, Zhuang G 2022 Plasma Sci. Techn. 24 025103
Google Scholar
[3] Dong Q L, Zhang J, Lan T, Xiao C J, Zhuang G, Chen C, Zhou Y K, Wu J, Long T, Nie L, Lu P C, Wang T X, Wu J R, Deng P, Wang X K, Bai Z Q, Huang Y H, Li J, Xue L, Yolbarsop A, Mao W Z, Zhou C, Liu A, Wu Z W, Xie J L, Ding W X, Liu W D, Chen W, Zhong W L, Xu M, Duan X R 2024 Plasma Sci. Techn. 26 075102
Google Scholar
[4] Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instruments 87 053512
Google Scholar
[5] Lan T, Chen C, Xiao C J, Ding W X, Wu J, Mao W Z, Zhang S, Kong D F, Zhang S B, Wu Z W, Dong Q L, Zhou Y K, Xu H Q, Wu J R, Wei Z A, Wen X H, Wang H, Zhou C, Liu A D, Li H, Xie J L, Liu W D, Zhuang G 2024 Plasma Sci. Techn. 26 105102
Google Scholar
[6] Tan M S, Ye Y, Kong D F, Dong Q L, Zhao Z H, Li Y H, Li B, Wen F, Huang Y Q, Tang L H, Li T Q, Zi Z, Zhong F B, Pei M X, Liu X Q, Zhang X H, Zhang S B 2024 Fusion Eng. Design 205 114559
Google Scholar
[7] Moser A L, Bellan P M 2012 Nature 482 379
Google Scholar
[8] Bellan P M 2018 Journal of Plasma Physics 84 755840501
Google Scholar
[9] Bellan P M 2018 Plasma Physics and Controlled Fusion 60 019501
Google Scholar
[10] Zhao H L, Zhang Y W, Yang L P, Huang H, Ma T 2024 Systems Engineering and Electronics 46 262
[11] Cheng J, Tang H B, York T M 2014 Physics of Plasmas 21 063501
Google Scholar
[12] Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202 [赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真 2021 物理学报 70 205202]
Google Scholar
Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202
Google Scholar
[13] Geddes C G R, Kornack T W, Brown M R 1998 Phys. Plasmas 5 1027
Google Scholar
[14] Yee J, Bellan P M 2000 Phys. Plasmas 7 3625
Google Scholar
[15] Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103
Google Scholar
[16] Zhang Y 2016 Ph. D. Dissertation (American: University of New Mexico
[17] Byvank T, Endrizzi D A, Forest C B, Langendorf S J, McCollam K J, Hsu S C 2021 J. Plasma Phys. 87 905870102
Google Scholar
[18] Kaur M, Barbano L J, Suen-Lewis E M, Shrock J E, Light A D, Schaffner D A, Brown M B, Woodruff S, Meyer T 2018 J. Plasma Phys. 84 905840114
Google Scholar
[19] Qi L W, Song J, Zhao C X, Bai X, D Zhao F T, Yan H J, Ren C S, Wang D Z 2020 Phys. Plasmas 27 122506
Google Scholar
[20] Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201 [张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201]
Google Scholar
Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201
Google Scholar
[21] Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202 [余鑫, 漆亮文, 赵崇霄, 任春生 2020 物理学报 69 035202]
Google Scholar
Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202
Google Scholar
[22] Guo H S, Yang L J, Liu S 2020 Nucl. Fusion Plasma Phys. 40 86
[23] Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203 [赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203]
Google Scholar
Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203
Google Scholar
[24] Romero-Talamás C A, Bellan P M, Hsu S C 2004 Rev. Sci. Instrum. 75 2664
Google Scholar
[25] Taylor J B 1986 Rev. Mod. Phys. 58 741
Google Scholar
[26] Schaffer M J 1987 Phys. Fluids 30 160
Google Scholar
[27] Jarboe T R 1989 Fusion Techn. 15 7
Google Scholar
[28] Solomon M https://works.swarthmore.edu/theses/951/ [2024-6-2]
-
图 7 不同模式下的高速相机图像 (a) 球马克模式; (b) 扩散模式; (c) 射流模式1 (${{\varPsi }}$ = 1.42 mWb); (d) 射流模式2 (${{\varPsi }}$ = 0 mWb)
Figure 7. High-speed camera photographs under different regions: (a) Spheromak region; (b) diffusion region; (c) jet region 1 (${{\varPsi }}$ = 1.42 mWb); (d) jet region 2 (${{\varPsi }}$ = 0 mWb).
表 1 不同模式下等离子体磁场特征
Table 1. Magnetic field characteristics of plasma in different modes.
模式 磁场特征(沿径向$r$变化) 磁场信号维持时间 $t /{\text{μs}}$ 球马克模式 ${{\boldsymbol{B}}_z}$中间大, 两边小, ${{\boldsymbol{B}}_\theta }$中间小, 两边大, 方向相反, 能够与贝塞尔函数拟合$\lambda \approx 42.6\;{{\text{m}}^{ - 1}}$ 10 扩散模式 ${{\boldsymbol{B}}_z}$中间大, 两边小, ${{\boldsymbol{B}}_\theta }$中间不是最小, 方向相反. 两者拟合的贝塞尔函数$ \lambda $不相等 7—8 射流模式 ${{\boldsymbol{B}}_z}$和${{\boldsymbol{B}}_\theta }$出现尖峰信号, 尤其${{\boldsymbol{B}}_\theta }$出现方向相反的尖峰信号, 贝塞尔函数无法成功拟合 16 表 2 不同模式下的运动特征
Table 2. Dynamic characteristics in different regions.
模式 环向运动特征 轴向运动特征 示意图 球马克模式 旋转速度逐渐增大, 最终均匀弥漫在
内外电极之间形成亮区团块, 随后缓慢
扩张并伴随旋转扩散模式 旋转速度较大并持续增加, 最终均匀
弥漫在内外电极之间等离子体快速向四周扩散, 呈现
整体弥散分布类似于“吹破的泡泡”射流模式 旋转速度较小, 局部出现螺旋丝状
结构, 磁场减小时旋转进一步减弱出现上下摆动, 磁场减小时
向中心聚集, 形成射流柱 -
[1] 漆亮文 2022 博士学位论文(大连: 大连理工大学)
Qi L W 2022 Ph. D. Dissertation (Dalian: Dalian University of Technology
[2] Dong Q L, Kong D F, Wu X H, Ye Y, Yang K, Lan T, Chen C, Wu J, Zhang S, Mao W Z, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Bai W, Yang D Z, Wen F, Zi P F, Li L, Hu G H, Zhang S B, Zhuang G 2022 Plasma Sci. Techn. 24 025103
Google Scholar
[3] Dong Q L, Zhang J, Lan T, Xiao C J, Zhuang G, Chen C, Zhou Y K, Wu J, Long T, Nie L, Lu P C, Wang T X, Wu J R, Deng P, Wang X K, Bai Z Q, Huang Y H, Li J, Xue L, Yolbarsop A, Mao W Z, Zhou C, Liu A, Wu Z W, Xie J L, Ding W X, Liu W D, Chen W, Zhong W L, Xu M, Duan X R 2024 Plasma Sci. Techn. 26 075102
Google Scholar
[4] Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instruments 87 053512
Google Scholar
[5] Lan T, Chen C, Xiao C J, Ding W X, Wu J, Mao W Z, Zhang S, Kong D F, Zhang S B, Wu Z W, Dong Q L, Zhou Y K, Xu H Q, Wu J R, Wei Z A, Wen X H, Wang H, Zhou C, Liu A D, Li H, Xie J L, Liu W D, Zhuang G 2024 Plasma Sci. Techn. 26 105102
Google Scholar
[6] Tan M S, Ye Y, Kong D F, Dong Q L, Zhao Z H, Li Y H, Li B, Wen F, Huang Y Q, Tang L H, Li T Q, Zi Z, Zhong F B, Pei M X, Liu X Q, Zhang X H, Zhang S B 2024 Fusion Eng. Design 205 114559
Google Scholar
[7] Moser A L, Bellan P M 2012 Nature 482 379
Google Scholar
[8] Bellan P M 2018 Journal of Plasma Physics 84 755840501
Google Scholar
[9] Bellan P M 2018 Plasma Physics and Controlled Fusion 60 019501
Google Scholar
[10] Zhao H L, Zhang Y W, Yang L P, Huang H, Ma T 2024 Systems Engineering and Electronics 46 262
[11] Cheng J, Tang H B, York T M 2014 Physics of Plasmas 21 063501
Google Scholar
[12] Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202 [赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真 2021 物理学报 70 205202]
Google Scholar
Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202
Google Scholar
[13] Geddes C G R, Kornack T W, Brown M R 1998 Phys. Plasmas 5 1027
Google Scholar
[14] Yee J, Bellan P M 2000 Phys. Plasmas 7 3625
Google Scholar
[15] Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103
Google Scholar
[16] Zhang Y 2016 Ph. D. Dissertation (American: University of New Mexico
[17] Byvank T, Endrizzi D A, Forest C B, Langendorf S J, McCollam K J, Hsu S C 2021 J. Plasma Phys. 87 905870102
Google Scholar
[18] Kaur M, Barbano L J, Suen-Lewis E M, Shrock J E, Light A D, Schaffner D A, Brown M B, Woodruff S, Meyer T 2018 J. Plasma Phys. 84 905840114
Google Scholar
[19] Qi L W, Song J, Zhao C X, Bai X, D Zhao F T, Yan H J, Ren C S, Wang D Z 2020 Phys. Plasmas 27 122506
Google Scholar
[20] Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201 [张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201]
Google Scholar
Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201
Google Scholar
[21] Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202 [余鑫, 漆亮文, 赵崇霄, 任春生 2020 物理学报 69 035202]
Google Scholar
Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202
Google Scholar
[22] Guo H S, Yang L J, Liu S 2020 Nucl. Fusion Plasma Phys. 40 86
[23] Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203 [赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203]
Google Scholar
Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203
Google Scholar
[24] Romero-Talamás C A, Bellan P M, Hsu S C 2004 Rev. Sci. Instrum. 75 2664
Google Scholar
[25] Taylor J B 1986 Rev. Mod. Phys. 58 741
Google Scholar
[26] Schaffer M J 1987 Phys. Fluids 30 160
Google Scholar
[27] Jarboe T R 1989 Fusion Techn. 15 7
Google Scholar
[28] Solomon M https://works.swarthmore.edu/theses/951/ [2024-6-2]
Catalog
Metrics
- Abstract views: 469
- PDF Downloads: 10
- Cited By: 0