Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasma dynamics characteristics of magnetized coaxial gun

WANG Zhen LIU Jinyao ZHANG Jinshuo JIANG Nan YAN Huijie SONG Jian

Citation:

Plasma dynamics characteristics of magnetized coaxial gun

WANG Zhen, LIU Jinyao, ZHANG Jinshuo, JIANG Nan, YAN Huijie, SONG Jian
cstr: 32037.14.aps.74.20250733
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The magnetized coaxial gun is an efficient plasma injection device with significant applications in fusion fueling, astrophysical jet simulation, and magnetic reconnection studies. In this work, three typical discharge regions, i.e. spheromak region, diffusive region, and jet region, are observed through high-speed imaging and magnetic field measurements. The dynamic characteristics of the plasma in each region are systematically investigated. Based on ideal magnetohydrodynamic (MHD) theory, the magnetic field configurations, rotational behavior, and axial motion mechanisms of the plasma in different regions analyzed in detail. The results show that in the spheromak region, the plasma reaches a Taylor-relaxed state, exhibiting uniform rotation and forming a stable compact torus (CT) structure. In the diffusive region, a relatively strong bias magnetic field leads to faster rotation, enhancing centrifugal force, and consequently, enhancing radial diffusion. In the jet region, due to the weaker bias field, the plasma accumulates at the end of the inner electrode, exhibiting a clear pinch effect and forming a jet with axial instability. These findings not only deepen the understanding of the discharge physics of magnetized coaxial guns but also provide valuable experimental and theoretical support for numerically simulating and developing efficient plasma sources.
      Corresponding author: SONG Jian, songjian@dlut.edu.cn
    • Funds: Project supported by the National MCF Energy R&D Program, China (Grant No. 2024YFE03130000) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT24GF110, DUTZD25112).
    [1]

    漆亮文 2022 博士学位论文(大连: 大连理工大学)

    Qi L W 2022 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [2]

    Dong Q L, Kong D F, Wu X H, Ye Y, Yang K, Lan T, Chen C, Wu J, Zhang S, Mao W Z, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Bai W, Yang D Z, Wen F, Zi P F, Li L, Hu G H, Zhang S B, Zhuang G 2022 Plasma Sci. Techn. 24 025103Google Scholar

    [3]

    Dong Q L, Zhang J, Lan T, Xiao C J, Zhuang G, Chen C, Zhou Y K, Wu J, Long T, Nie L, Lu P C, Wang T X, Wu J R, Deng P, Wang X K, Bai Z Q, Huang Y H, Li J, Xue L, Yolbarsop A, Mao W Z, Zhou C, Liu A, Wu Z W, Xie J L, Ding W X, Liu W D, Chen W, Zhong W L, Xu M, Duan X R 2024 Plasma Sci. Techn. 26 075102Google Scholar

    [4]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instruments 87 053512Google Scholar

    [5]

    Lan T, Chen C, Xiao C J, Ding W X, Wu J, Mao W Z, Zhang S, Kong D F, Zhang S B, Wu Z W, Dong Q L, Zhou Y K, Xu H Q, Wu J R, Wei Z A, Wen X H, Wang H, Zhou C, Liu A D, Li H, Xie J L, Liu W D, Zhuang G 2024 Plasma Sci. Techn. 26 105102Google Scholar

    [6]

    Tan M S, Ye Y, Kong D F, Dong Q L, Zhao Z H, Li Y H, Li B, Wen F, Huang Y Q, Tang L H, Li T Q, Zi Z, Zhong F B, Pei M X, Liu X Q, Zhang X H, Zhang S B 2024 Fusion Eng. Design 205 114559Google Scholar

    [7]

    Moser A L, Bellan P M 2012 Nature 482 379Google Scholar

    [8]

    Bellan P M 2018 Journal of Plasma Physics 84 755840501Google Scholar

    [9]

    Bellan P M 2018 Plasma Physics and Controlled Fusion 60 019501Google Scholar

    [10]

    Zhao H L, Zhang Y W, Yang L P, Huang H, Ma T 2024 Systems Engineering and Electronics 46 262

    [11]

    Cheng J, Tang H B, York T M 2014 Physics of Plasmas 21 063501Google Scholar

    [12]

    Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202 [赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真 2021 物理学报 70 205202]Google Scholar

    Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202Google Scholar

    [13]

    Geddes C G R, Kornack T W, Brown M R 1998 Phys. Plasmas 5 1027Google Scholar

    [14]

    Yee J, Bellan P M 2000 Phys. Plasmas 7 3625Google Scholar

    [15]

    Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103Google Scholar

    [16]

    Zhang Y 2016 Ph. D. Dissertation (American: University of New Mexico

    [17]

    Byvank T, Endrizzi D A, Forest C B, Langendorf S J, McCollam K J, Hsu S C 2021 J. Plasma Phys. 87 905870102Google Scholar

    [18]

    Kaur M, Barbano L J, Suen-Lewis E M, Shrock J E, Light A D, Schaffner D A, Brown M B, Woodruff S, Meyer T 2018 J. Plasma Phys. 84 905840114Google Scholar

    [19]

    Qi L W, Song J, Zhao C X, Bai X, D Zhao F T, Yan H J, Ren C S, Wang D Z 2020 Phys. Plasmas 27 122506Google Scholar

    [20]

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201 [张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201]Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [21]

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202 [余鑫, 漆亮文, 赵崇霄, 任春生 2020 物理学报 69 035202]Google Scholar

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar

    [22]

    Guo H S, Yang L J, Liu S 2020 Nucl. Fusion Plasma Phys. 40 86

    [23]

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203 [赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203]Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [24]

    Romero-Talamás C A, Bellan P M, Hsu S C 2004 Rev. Sci. Instrum. 75 2664Google Scholar

    [25]

    Taylor J B 1986 Rev. Mod. Phys. 58 741Google Scholar

    [26]

    Schaffer M J 1987 Phys. Fluids 30 160Google Scholar

    [27]

    Jarboe T R 1989 Fusion Techn. 15 7Google Scholar

    [28]

    Solomon M https://works.swarthmore.edu/theses/951/ [2024-6-2]

  • 图 1  磁化同轴枪放电实验装置图

    Figure 1.  Schematic of the magnetized coaxial gun device.

    图 2  磁化同轴枪典型放电波形

    Figure 2.  Typical electrical signals of discharge in the magnetized coaxial gun.

    图 3  典型高速相机图像序列: 球马克模式、扩散模式以及射流模式

    Figure 3.  Typical high-speed camera image sequences: Spheromak mode, diffusion mode, and jet mode.

    图 4  ${\lambda _{{\text{gun}}}}$划分3个部分, 即扩散模式、球马克模式以及射流模式

    Figure 4.  Three regimes of ${\lambda _{{\text{gun}}}}$: Diffusion mode, spheromak mode, and jet mode.

    图 5  不同模式下磁场信号波形 (a), (b) 球马克模式; (c), (d) 扩散模式; (e), (f) 射流模式

    Figure 5.  Magnetic signal waveforms for different modes: (a), (b) The spheromak mode, (c), (d) the diffusion mode; (e), (f) the jet mode.

    图 6  轴向磁场与环向磁场拟合结果

    Figure 6.  Fitting results of axial and azimuthal magnetic fields.

    图 7  不同模式下的高速相机图像 (a) 球马克模式; (b) 扩散模式; (c) 射流模式1 (${{\varPsi }}$ = 1.42 mWb); (d) 射流模式2 (${{\varPsi }}$ = 0 mWb)

    Figure 7.  High-speed camera photographs under different regions: (a) Spheromak region; (b) diffusion region; (c) jet region 1 (${{\varPsi }}$ = 1.42 mWb); (d) jet region 2 (${{\varPsi }}$ = 0 mWb).

    图 8  不同模式下等离子体旋转速度

    Figure 8.  Plasma rotation velocities in different modes.

    图 9  MATLAB处理后的伪彩图 (a) 球马克模式; (b) 扩散模式; (c) 射流模式1 (${{\varPsi }}$ = 1.42 mWb); (d) 射流模式2 (${{\varPsi }}$ = 0 mWb)

    Figure 9.  Pseudo-color images: (a) Spheromak region; (b) diffusion region; (c) jet region 1 (${{\varPsi }}$ = 1.42 mWb); (d) jet region 2 (${{\varPsi }}$ = 0 mWb).

    表 1  不同模式下等离子体磁场特征

    Table 1.  Magnetic field characteristics of plasma in different modes.

    模式 磁场特征(沿径向$r$变化) 磁场信号维持时间
    $t /{\text{μs}}$
    球马克模式 ${{\boldsymbol{B}}_z}$中间大, 两边小, ${{\boldsymbol{B}}_\theta }$中间小, 两边大, 方向相反, 能够与贝塞尔函数拟合$\lambda \approx 42.6\;{{\text{m}}^{ - 1}}$ 10
    扩散模式 ${{\boldsymbol{B}}_z}$中间大, 两边小, ${{\boldsymbol{B}}_\theta }$中间不是最小, 方向相反. 两者拟合的贝塞尔函数$ \lambda $不相等 7—8
    射流模式 ${{\boldsymbol{B}}_z}$和${{\boldsymbol{B}}_\theta }$出现尖峰信号, 尤其${{\boldsymbol{B}}_\theta }$出现方向相反的尖峰信号, 贝塞尔函数无法成功拟合 16
    DownLoad: CSV

    表 2  不同模式下的运动特征

    Table 2.  Dynamic characteristics in different regions.

    模式 环向运动特征 轴向运动特征 示意图
    球马克模式 旋转速度逐渐增大, 最终均匀弥漫在
    内外电极之间
    形成亮区团块, 随后缓慢
    扩张并伴随旋转
    扩散模式
    旋转速度较大并持续增加, 最终均匀
    弥漫在内外电极之间
    等离子体快速向四周扩散, 呈现
    整体弥散分布类似于“吹破的泡泡”
    射流模式 旋转速度较小, 局部出现螺旋丝状
    结构, 磁场减小时旋转进一步减弱
    出现上下摆动, 磁场减小时
    向中心聚集, 形成射流柱
    DownLoad: CSV
  • [1]

    漆亮文 2022 博士学位论文(大连: 大连理工大学)

    Qi L W 2022 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [2]

    Dong Q L, Kong D F, Wu X H, Ye Y, Yang K, Lan T, Chen C, Wu J, Zhang S, Mao W Z, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Bai W, Yang D Z, Wen F, Zi P F, Li L, Hu G H, Zhang S B, Zhuang G 2022 Plasma Sci. Techn. 24 025103Google Scholar

    [3]

    Dong Q L, Zhang J, Lan T, Xiao C J, Zhuang G, Chen C, Zhou Y K, Wu J, Long T, Nie L, Lu P C, Wang T X, Wu J R, Deng P, Wang X K, Bai Z Q, Huang Y H, Li J, Xue L, Yolbarsop A, Mao W Z, Zhou C, Liu A, Wu Z W, Xie J L, Ding W X, Liu W D, Chen W, Zhong W L, Xu M, Duan X R 2024 Plasma Sci. Techn. 26 075102Google Scholar

    [4]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instruments 87 053512Google Scholar

    [5]

    Lan T, Chen C, Xiao C J, Ding W X, Wu J, Mao W Z, Zhang S, Kong D F, Zhang S B, Wu Z W, Dong Q L, Zhou Y K, Xu H Q, Wu J R, Wei Z A, Wen X H, Wang H, Zhou C, Liu A D, Li H, Xie J L, Liu W D, Zhuang G 2024 Plasma Sci. Techn. 26 105102Google Scholar

    [6]

    Tan M S, Ye Y, Kong D F, Dong Q L, Zhao Z H, Li Y H, Li B, Wen F, Huang Y Q, Tang L H, Li T Q, Zi Z, Zhong F B, Pei M X, Liu X Q, Zhang X H, Zhang S B 2024 Fusion Eng. Design 205 114559Google Scholar

    [7]

    Moser A L, Bellan P M 2012 Nature 482 379Google Scholar

    [8]

    Bellan P M 2018 Journal of Plasma Physics 84 755840501Google Scholar

    [9]

    Bellan P M 2018 Plasma Physics and Controlled Fusion 60 019501Google Scholar

    [10]

    Zhao H L, Zhang Y W, Yang L P, Huang H, Ma T 2024 Systems Engineering and Electronics 46 262

    [11]

    Cheng J, Tang H B, York T M 2014 Physics of Plasmas 21 063501Google Scholar

    [12]

    Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202 [赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真 2021 物理学报 70 205202]Google Scholar

    Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202Google Scholar

    [13]

    Geddes C G R, Kornack T W, Brown M R 1998 Phys. Plasmas 5 1027Google Scholar

    [14]

    Yee J, Bellan P M 2000 Phys. Plasmas 7 3625Google Scholar

    [15]

    Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103Google Scholar

    [16]

    Zhang Y 2016 Ph. D. Dissertation (American: University of New Mexico

    [17]

    Byvank T, Endrizzi D A, Forest C B, Langendorf S J, McCollam K J, Hsu S C 2021 J. Plasma Phys. 87 905870102Google Scholar

    [18]

    Kaur M, Barbano L J, Suen-Lewis E M, Shrock J E, Light A D, Schaffner D A, Brown M B, Woodruff S, Meyer T 2018 J. Plasma Phys. 84 905840114Google Scholar

    [19]

    Qi L W, Song J, Zhao C X, Bai X, D Zhao F T, Yan H J, Ren C S, Wang D Z 2020 Phys. Plasmas 27 122506Google Scholar

    [20]

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201 [张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201]Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [21]

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202 [余鑫, 漆亮文, 赵崇霄, 任春生 2020 物理学报 69 035202]Google Scholar

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar

    [22]

    Guo H S, Yang L J, Liu S 2020 Nucl. Fusion Plasma Phys. 40 86

    [23]

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203 [赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203]Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [24]

    Romero-Talamás C A, Bellan P M, Hsu S C 2004 Rev. Sci. Instrum. 75 2664Google Scholar

    [25]

    Taylor J B 1986 Rev. Mod. Phys. 58 741Google Scholar

    [26]

    Schaffer M J 1987 Phys. Fluids 30 160Google Scholar

    [27]

    Jarboe T R 1989 Fusion Techn. 15 7Google Scholar

    [28]

    Solomon M https://works.swarthmore.edu/theses/951/ [2024-6-2]

  • [1] Qi Liang-Wen, Du Man-Qiang, Wen Xiao-Dong, Song Jian, Yan Hui-Jie. Dynamics and impurity spectral characteristics of coaxial gun discharge plasma. Acta Physica Sinica, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] Zhang Jin-Shuo, Sun Hui, Du Zhi-Jie, Zhang Xue-Hang, Xiao Qing-Mei, Fan Jin-Rui, Yan Hui-Jie, Song Jian. Analysis and optimization of acceleration model in coaxial plasma gun in pre-fill mode. Acta Physica Sinica, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [3] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [4] Song Jian, Li Jia-Wen, Bai Xiao-Dong, Zhang Jin-Shuo, Yan Hui-Jie, Xiao Qing-Mei, Wang De-Zhen. Effect of length of outer electrode on plasma characteristics in coaxial gun. Acta Physica Sinica, 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [5] Zhao Fan-Tao, Song Jian, Zhang Jin-Shuo, Qi Liang-Wen, Zhao Chong-Xiao, Wang De-Zhen. Effects of magnetized coaxial plasma gun operation on spheromak formation and plasma characteristics. Acta Physica Sinica, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [6] Yu Xin, Qi Liang-Wen, Zhao Chong-Xiao, Ren Chun-Sheng. Comparative study of positive and negative pulsed discharge plasma characteristics of coaxial gun. Acta Physica Sinica, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [7] Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong. Influence of Hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [8] Li Hang,  Yang Dong,  Li San-Wei,  Kuang Long-Yu,  Li Li-Ling,  Yuan Zheng,  Zhang Hai-Ying,  Yu Rui-Zhen,  Yang Zhi-Wen,  Chen Tao,  Cao Zhu-Rong,  Pu Yu-Dong,  Miao Wen-Yong,  Wang Feng,  Yang Jia-Min,  Jiang Shao-En,  Ding Yong-Kun,  Hu Guang-Yue,  Zheng Jian. Observation of hydrodynamic phenomena of plasma interaction in hohlraums. Acta Physica Sinica, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [9] Yang Liang, Zhang Jun-Long, Yan Hui-Jie, Hua Yue, Ren Chun-Sheng. Experimental study on coaxial gun pulse discharge plasma density change in transport process. Acta Physica Sinica, 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [10] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [11] Zhang Jun-Long, Yang Liang, Yan Hui-Jie, Hua Yue, Ren Chun-Sheng. Influence of discharge parameters on blow-by in a coaxial plasma gun. Acta Physica Sinica, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [12] Zou Dan-Dan, Yang Wei-Hong. Dynamically accessible variations for two-fluid plasma model. Acta Physica Sinica, 2014, 63(3): 030401. doi: 10.7498/aps.63.030401
    [13] Li Lu-Lu, Zhang Hua, Yang Xian-Jun. Two-dimensional magneto-hydrodynamic description of field reversed configuration. Acta Physica Sinica, 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [14] Gao Zhu-Xiu, Feng Chun-Hua, Yang Xuan-Zong, Huang Jian-Guo, Han Jian-Wei. Research on plasma axial velocity generated by small debris accelerator coaxial gun. Acta Physica Sinica, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [15] Li Chuan-Qi, Gu Bin, Mu Li-Li, Zhang Qing-Mei, Chen Mei-Hong, Jiang Yong. An MHD simulation study on the location and shape of magnetopause in equatorial plane. Acta Physica Sinica, 2012, 61(21): 219402. doi: 10.7498/aps.61.219402
    [16] Feng Shi-De, Feng Tao. Biot-Savart law and the formation mechanism of Somali low-level jet. Acta Physica Sinica, 2011, 60(2): 029202. doi: 10.7498/aps.60.029202
    [17] Cang Yu, Lu Xin, Wu Hui-Chun, Zhang Jie. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics. Acta Physica Sinica, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [18] YANG WEI-HONG, HU XI-WEI. MAGNETOHYDRODYNAMICS WAVES IN A NONHOMEG-ENEOUS CURRENT-CARRYING CYLINDRICAL PLASMA. Acta Physica Sinica, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [19] KUANG GUANG-LI, G.WAIDMANN. THE PROPERTIES OF THE MHD OSCILLATIONS IN TEXTOR TOKAMAK PLASMAS. Acta Physica Sinica, 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [20] LI FU-BIN. LONG RANGE CORRELATIONS FOR MICROSCOPIC STOCHA-STIC DYNAMICS IN A NONEQUILIBRIUM STEADY STATE (Ⅰ)——CONSTRUCTION OF THE THEORY OF FLUCTUATING HYDRODYNAMICS IN TERMS OF A STOCHASTIC LATTICE GAS MODEL. Acta Physica Sinica, 1990, 39(3): 381-390. doi: 10.7498/aps.39.381
Metrics
  • Abstract views:  469
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2025
  • Accepted Date:  22 June 2025
  • Available Online:  01 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回