-
For magnetic confined fusion devices, magnetic probe diagnostic is a basic but very important diagnostic tool for studying plasma magnetic fluctuations. The first experimental phase of the Chinese First Quasi-axisymmetric Stellarator (CFQS), which is also called CFQS-T, needs magnetic probe diagnostics to provide plasma magnetic fluctuation measurements, especially the high-frequency ($50 \leqslant f \leqslant 300$ kHz) magnetic fluctuation measurements. In this paper, a newly developed high-frequency magnetic probe array (HFMPA) diagnostic on the CFQS-T is reported. This array consists of 8 identical three-dimensional high-frequency magnetic probes, each of which can simultaneously measure magnetic fluctuations in the poloidal, radial and toroidal directions. The HFMPA magnetic probes are carefully mounted on the inner vacuum vessel wall of the CFQS-T, and their positions are precisely measured by the laser tracker system. The HFMPA can be used to study the poloidal and toroidal propagation characteristics of magnetic fluctuations due to the optimized spatial arrangement, and its maximum toroidal mode number resolution is improved to n = ±16 compared with n = ±6 of the low-frequency magnetic probe array (LFMPA, used for the $f \leqslant 50$ kHz magnetic fluctuation measurements). The main subsystems of the HFMPA diagnostic, such as the mechanical system, signal transmission lines, acquisition and control systems, and the challenges overcome in the development of each subsystem, will be briefly introduced in this paper. The effective areas of the HFMPA magnetic probes are calibrated by the relative calibration method, which shows that their areas are all around 0.02 m2. The in-situ frequency response of the HFMPA magnetic probes is calibrated with an LCR digital bridge with a maximum working frequency of 10 MHz. The resonance frequency of the HFMPA magnetic probe in each measurement direction is greater than 400 kHz, which meets the design requirements for measuring 50–300 kHz high-frequency magnetic fluctuations in CFQS-T. Preliminary applications of the HFMPA diagnostic in studying the low-frequency (1.5–16.0 kHz) magnetic fluctuations and high-frequency (65–105 kHz) magnetic fluctuations in CFQS-T are briefly introduced, which shows that the HFMPA diagnostic works well for providing the spectrogram, poloidal, and toroidal propagation information of low-frequency and high-frequency magnetic fluctuations. It is worth noting that the measurement and analysis results of high-frequency (65–105 kHz) magnetic fluctuations in CFQS-T are reported for the first time in this paper. The successful development of the HFMPA diagnostic will help to carry out in-depth research on plasma magnetic fluctuations in CFQS-T stellarator.
-
Keywords:
- CFQS-T quasi-axisymmetric stellarator /
- high-frequency magnetic probe array /
- setup and calibration /
- preliminary application
-
图 4 (a) CFQS-T准环对称仿星器上的高频磁探针及其机械保护部件的模型; (b) CFQS-T准环对称仿星器上的高频磁探针的实物照片; (c) 包含低频磁探针阵列(M1—M13)和高频磁探针阵列(HM1—HM8)的模型
Figure 4. (a) Models of the high-frequency magnetic probes and their metal protective cases; (b) photo of the high-frequency magnetic probe array on CFQS-T; (c) model of the low-frequency (M1–M13) and high-frequency (HM1–HM8) magnetic probe arrays on CFQS-T.
图 6 CFQS-T仿星器上三维高频磁探针的原位频率响应标定结果 (a), (b) 高频磁探针总的线路输出阻抗的幅度和相位频率响应; (c), (d) 高频磁探针总的线路传递函数的幅度和相位频率响应
Figure 6. Results of in-situ frequency response calibration of the HFMPA 3D magnetic probe on CFQS-T: (a), (b) Frequency responses of amplitude and phase of the total output impedance respectively; (c), (d) frequency responses of the amplitude and phase of the transfer function, respectively.
图 7 CFQS-T一炮氦等离子体放电(#95581)随时间演化信息 (a) 模块化线圈的电流(黑线)和根据定标公式计算的中心平衡磁场强度(红线); (b) 加热入射功率; (c) 等离子体芯部辐射功率(黑线)与边界辐射功率(红线); (d) 可见光谱强度; (e) 弦平均电子密度; (f) 微波干涉诊断测得的电子密度的频谱; (g) 低频磁探针(选用M7, 见图4)测得的三维磁扰动; (h) 高频磁探针(选用HM4, 见图4)测得的三维磁扰动
Figure 7. Time history of a helium discharge #95581 on CFQS-T: (a) Electric current through a modular coil (black color), corresponding equilibrium magnetic field in the plasma center calculated with a scaling equation (red color); (b) injecting power of the plasma heating system; (c) core plasma radiation power (black color) and edge plasma radiation power (red color); (d) intensity of the visible light measured by a spectrometer; (e) line-averaged electron density measured by a microwave interferometer; (f) spectrogram of the plasma electron density measured by the microwave interferometer; (g) three-dimensional magnetic fluctuations measured by a low-frequency magnetic probe (M7, see Fig. 4); (h) three-dimensional magnetic fluctuations measured by a high-frequency magnetic probe (HM4, see Fig.4).
图 8 CFQS-T仿星器一炮放电(#95581)的时间演化信息 (a) 一个低频磁探针(M7, 见图4)测得的三维磁涨落信号及其对应的极向、径向及环向的磁涨落频谱; (b) 一个高频磁探针(HM4, 见图4)测得的三维磁涨落信号及其对应的极向、径向及环向的磁涨落频谱
Figure 8. Time evolutions of three-dimensional magnetic signals and their spectrograms in the discharge #95581 on CFQS-T: (a) A low-frequency magnetic probe (M7, see Fig. 4); (b) a high-frequency magnetic probe (HM4, see Fig. 4).
图 9 CFQS-T仿星器一炮放电中(#95581)的时间演化信息 (a) 不同极向位置的低频磁探针测得的极向磁涨落信号; (b) 高频磁探针(HM2, HM3和HM4)测得的极向磁涨落信号; (c) 经过8—12 kHz带通滤波后高频磁探针(HM6和HM7)测得的径向磁涨落信号; M1, HM2等标签表示不同的磁探针, 在图4中标出了这些磁探针的位置, 红色箭头表示8—12 kHz的磁涨落沿极向的传播方向
Figure 9. Time evolution of the discharge #95581 on CFQS-T: (a) Poloidal magnetic signals of the LFMPA magnetic probes; (b) poloidal magnetic signals of the HFMPA magnetic probes (HM2, HM3, and HM4); (c) radial magnetic signals of the HFMPA magnetic probes (HM6 and HM7), in different poloidal positions and filtered in the frequency band of 8–12 kHz; the labels M1, HM2, etc. in Fig. 9 represent different magnetic probes as shown in Fig. 4, the red arrows indicate the poloidal propagating direction of the magnetic fluctuations in the frequency range of 8–12 kHz.
图 10 CFQS-T仿星器一炮放电中(#95581)的时间演化信息 (a) 不同环向位置的低频磁探针(M7和M13)测得的极向磁涨落信号; (b) 高频磁探针(HM2和HM5)测得的极向磁涨落信号; (c) 经过8—12 kHz带通滤波后高频磁探针(HM6和HM8)测得的径向磁涨落信号; 图中标签M7, HM2等表示不同的磁探针, 在图4中已经标记出来, 红色箭头显示了8—12 kHz的磁涨落沿环向的传播方向
Figure 10. Time evolution of the discharge #95581 on CFQS-T: (a) Poloidal magnetic signals of two LFMPA magnetic probes (M7 and M13); (b) poloidal magnetic signals of two HFMPA magnetic probes (HM2 and HM5); (c) radial magnetic signals of two HFMPA magnetic probes (HM6 and HM8), in different toroidal positions and filtered in the frequency band of 8–12 kHz; the labels M7 and HM2, etc. represent different magnetic probes as shown in Fig. 4, the red arrows indicate the toroidal propagating direction of the magnetic fluctuations in the frequency range of 8–12 kHz.
图 11 CFQS-T一炮氢等离子体放电(#94918) 随时间演化信息 (a) 模块化线圈的电流(黑线)以及根据定标公式计算的中心平衡磁场强度(红线所示); (b) 加热入射功率; (c) 等离子体芯部辐射功率(黑线所示)与边界辐射功率(红线所示); (d) 可见光谱强度; (e) 弦平均电子密度; (f) 微波干涉诊断测得的电子密度的频谱; (g) 低频磁探针(选用M7, 见图4)测得的极向磁扰动信号及其(h) 频谱; (i) 高频磁探针(选用HM4, 见图4)测得的极向磁扰动信号及其(j) 频谱; (k) (j)图在5.28—5.78 s放大图
Figure 11. Time history of the hydrogen discharge #94918 on CFQS-T: (a) Electric current through a modular coil (black color) and corresponding equilibrium magnetic field in the plasma center calculated with a scaling equation (red color); (b) injecting power of the plasma heating system; (c) core plasma radiation power (black color) and edge plasma radiation power (red color); (d) intensity of the visible light measured by a spectrometer; (e) line-averaged electron density measured by a microwave interferometer; (f) spectrogram of the plasma electron density measured by the microwave interferometer; (g) poloidal magnetic signal measured by a low-frequency magnetic probe (M7, see Fig. 4) and its (h) spectrogram; (i) poloidal magnetic signals measured by a high-frequency magnetic probe (HM4, see Fig. 4) and its (j) spectrogram; (k) is the zoomed-in plot of Fig. (j).
图 12 CFQS-T仿星器一炮放电中(#94918)随时间演化信息 (a) 不同极向位置的高频磁探针(HM2, HM3及HM4)测得的极向磁涨落信号; (b) 不同极向位置的高频磁探针(HM6和HM7)测得的径向磁涨落信号; (c) 不同环向位置的高频磁探针(HM2和HM5)测得的极向磁涨落信号; (d) 经过70—90 kHz带通滤波后不同环向位置的高频磁探针(HM6和HM8)测得的径向磁涨落信号; 标签HM2, HM5 和 MH8 等表示不同位置的高频磁探针, 见图4标记; (a), (b)中箭头显示了70—90 kHz的磁涨落沿极向的传播方向, (c), (d)中箭头显示了70—90 kHz的磁涨落沿环向的传播方向
Figure 12. Time evolution of the the discharge #94918 on CFQS-T: (a) Poloidal magnetic signals of three poloidally separated HFMPA magnetic probes (HM2, HM3, and HM4); (b) radial magnetic signals of two poloidally separated HFMPA magnetic probes (HM6 and HM7); (c) poloidal magnetic signals of two toroidally separated HFMPA magnetic probes (HM2 and HM5); (d) radial magnetic signals of two toroidally separated HFMPA magnetic probes (HM6 and HM8), filtered in the frequency band of 70–90 kHz; the labels HM2, HM5, and MH8, etc. represent the high-frequency magnetic probes in different positions as shown in Fig. 4, the arrows in (a), (b) indicate the poloidal propagating direction of the magnetic fluctuations in the frequency range of 70–90 kHz, while the arrows in (c), (d) indicate the toroidal propagating direction and of the magnetic fluctuations in the frequency range of 70–90 kHz.
表 1 CFQS-T仿星器高频磁探针标定后的有效面积(${S_{\text{N}}}$)
Table 1. Calibrated effective areas (${S_{\text{N}}}$) of HFMPA magnetic probes on CFQS-T.
HFMPA
magnetic
probe number${S_{\text{N}}}$ in toroidal
direction/m2${S_{\text{N}}}$ in radial
direction/m2${S_{\text{N}}}$ in poloidal
direction/m21 0.02003 0.02025 0.01756 2 0.02038 0.02030 0.01802 3 0.01999 0.02037 0.01729 4 0.02049 0.02095 0.01758 5 0.02040 0.02100 0.01797 6 0.01998 0.02022 0.01791 7 0.02040 0.02033 0.01721 8 0.01961 0.02097 0.01797 -
[1] Gates D A, Anderson D, Anderson S, Zarnstorff M, Spong D A, Weitzner H, Neilson G H, Ruzic D, Andruczyk D, Harris J H, Mynick H, Hegna C C, Schmitz O, Talmadge J N, Curreli D, Maurer D, Boozer A H, Knowlton S, Allain J P, Ennis D, Wurden G, Reiman A, Lore J D, Landreman M, Freidberg J P, Hudson S R, Porkolab M, Demers D, Terry J, Edlund E, Lazerson S A, Pablant N, Fonck R, Volpe F, Canik J, Granetz R, Ware A, Hanson J D, Kumar S, Deng C, Likin K, Cerfon A, Ram A, Hassam A, Prager S, Paz-Soldan C, Pueschel M J, Joseph I, Glasser A H 2018 J. Fusion Energ. 37 51
Google Scholar
[2] Yoshida M, McDermott R M, Angioni C, Camenen Y, Citrin J, Jakubowski M, Hughes J W, Idomura Y, Mantica P, Mariani A, Mordijck S, Paul E J, Tala T, Verdoolaege G, Zocco A, Casson F J, Dif-Pradalier G, Duval B, Grierson B A, Kaye S M, Manas P, Maslov M, Odstrcil T, Rice J E, Schmitz L, Sciortino F, Solano E R, Staebler G, Valovič M, Wolfrum E, Snipes J A 2025 Nucl. Fusion 65 033001
Google Scholar
[3] Toi K, Ogawa K, Isobe M, Osakabe M, Spong D A, Todo Y 2011 Plasma Phys. Contr. Fusion 53 024008
Google Scholar
[4] Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008
Google Scholar
[5] Rahbarnia K, Thomsen H, Schilling J, vaz Mendes S, Endler M, Kleiber R, Könies A, Borchardt M, Slaby C, Bluhm T, Zilker M, Carvalho B B 2021 Plasma Phys. Contr. Fusion 63 015005
Google Scholar
[6] Salewski M, Spong D A, Aleynikov P, Bilato R, Breizman B N, Briguglio S, Cai H, Chen L, Chen W, Duarte V N, Dumont R J, Falessi M V, Fitzgerald M, Fredrickson E D, García-Muñoz M, Gorelenkov N N, Hayward-Schneider T, Heidbrink W W, Hole M J, Kazakov Y O, Kiptily V G, Könies A, Kurki-Suonio T, Lauber P, Lazerson S A, Lin Z, Mishchenko A, Moseev D, Muscatello C M, Nocente M, Podestà M, Polevoi A, Schneider M, Sharapov S E, Snicker A, Todo Y, Qiu Z, Vlad G, Wang X, Zarzoso D, Van Zeeland M A, Zonca F, Pinches S D 2025 Nucl. Fusion 65 043002
Google Scholar
[7] Xanthopoulos P, Mynick H E, Helander P, Turkin Y, Plunk G G, Jenko F, Gorler T, Told D, Bird T, Proll J H 2014 Phys. Rev. Lett. 113 155001
Google Scholar
[8] Zhong W L, Zhao K J, Zou X L, Dong J Q 2020 Rev. Mod. Plasma Phys. 4 11
Google Scholar
[9] Diallo A, Laggner F M 2021 Plasma Phys. Contr. Fusion 63 013001
Google Scholar
[10] Fujisawa A 2021 Proc. Jpn. Acad Ser. B Phys. Biol. Sci. 97 103
Google Scholar
[11] Nespoli F, Masuzaki S, Tanaka K, Ashikawa N, Shoji M, Gilson E P, Lunsford R, Oishi T, Ida K, Yoshinuma M, Takemura Y, Kinoshita T, Motojima G, Kenmochi N, Kawamura G, Suzuki C, Nagy A, Bortolon A, Pablant N A, Mollen A, Tamura N, Gates D A, Morisaki T 2022 Nat. Phys. 18 350
Google Scholar
[12] Sánchez E, Bañón Navarro A, Wilms F, Borchardt M, Kleiber R, Jenko F 2023 Nucl. Fusion 63 046013
Google Scholar
[13] Liu Y Q, Tan Y, Pan O, Ke R, Wang W H, Gao Z 2014 Rev. Sci. Instrum. 85 11E802
Google Scholar
[14] Cheng Z B, Tan Y, Gao Z, Wang S Z, Wang B B, Liu W B 2021 Rev. Sci. Instrum. 92 053518
Google Scholar
[15] Guo D J, Hu Q M, Li D, Shen C S, Wang N C, Huang Z, Huang M X, Ding Y H, Xu G, Yu Q Q, Tang Y J, Zhuang G 2017 Rev. Sci. Instrum. 88 123502
Google Scholar
[16] Han D L, Shen C S, Wang N C, Li D, Mao F Y, Ren Z K, Ding Y H, the J-TEXT Team 2021 Plasma Sci. Tech. 23 055104
Google Scholar
[17] Tu C, Liu A D, Li Z C, Tan M S, Luo B, You W, Li C G, Bai W, Fu C S, Huang F C, Xiao B J, Shen B, Shi T H, Chen D L, Mao W Z, Li H, Xie J L, Lan T, Ding W X, Xiao C J, Liu W D 2017 Rev. Sci. Instrum. 88 093513
Google Scholar
[18] Liang S Y, Ji X Q, Sun T F, Xu Y, Lu J, Yuan B S, Ren L L, Yang Q W 2017 AIP Adv. 7 125004
Google Scholar
[19] Chen D L, Shen B, Shi T H, Guo B H, Li T Y, Chen L X, Xue M M, Chu N 2023 Plasma Sci. Tech. 25 125102
Google Scholar
[20] Lan H, Shi T H, Yan N, Li X Q, Li S, Chen R, Duan M Y, Hu G H, Liu L N, Zhang W, Chen M, Zheng Y Y, Yuan Z, Wang Y, Xu Z H, Xu L Q, Zi P F, Chen L, Liu S C, Wu D G, Ding G F, Meng L Y, Wang Z C, Zang Q, Wu M Q, Zhu X, Hao B L, Lin X D, Gao X, Wang L, Xu G S 2023 Plasma Sci. Tech. 25 075105
Google Scholar
[21] Lan H, Shi T H, Yan N, Li X Q, Li S, Chen R, Duan M Y, Liu L N, Chen M, Chen L X, Chen D L, Shen B, Wang Y, Xu Z H, Lu Z K, Shao L M, Zheng Y Y, Yuan Z, Xu L Q, Hu G H, Chen L, Liu S C, Zi P F, Wang P, Wu D G, Ding G F, Meng L Y, Shen J F, Yang S, Shao J R, Zang Q, Wang L, Xu G S 2024 Fusion Eng. Des. 207 114636
Google Scholar
[22] Ouyang T B, Qian Y Z, Liu S Q, Yang X S, Chen X C 2022 AIP Adv. 12 015314
Google Scholar
[23] Strait E J 2006 Rev. Sci. Instrum. 77 023502
Google Scholar
[24] Heeter R F, Fasoli A F, Ali-Arshad S, Moret J M 2000 Rev. Sci. Instrum. 71 4092
Google Scholar
[25] Artaserse G, Baruzzo M, Henriques R B, Gerasimov S, Lam N, Tsalas M 2019 Fusion Eng. Des. 146 2781
Google Scholar
[26] Hole M J, Appel L C, Martin R 2009 Rev. Sci. Instrum. 80 123507
Google Scholar
[27] Moreau P, Le-Luyer A, Spuig P, Malard P, Saint-Laurent F, Artaud J F, Morales J, Faugeras B, Heumann H, Cantone B, Moreau M, Brun C, Nouailletas R, Nardon E, Santraine B, Berne A, Kumari P, Belsare S, Team W 2018 Rev. Sci. Instrum. 89 10J109
Google Scholar
[28] Takechi M, Matsunaga G, Sakurai S, Sasajima T, Yagyu J, Hoshi R, Kawamata Y, Kurihara K, Nishikawa T, Ryo T, Kagamihara S, Nakamura K 2015 Fusion Eng. Des. 96-97 985
[29] Haskey S R, Blackwell B D, Seiwald B, Hole M J, Pretty D G, Howard J, Wach J 2013 Rev. Sci. Instrum. 84 093501
Google Scholar
[30] Sakakibara S, Yamada H 2010 Fusion Sci. Tech. 58 471
Google Scholar
[31] Endler M, Brucker B, Bykov V, Cardella A, Carls A, Dobmeier F, Dudek A, Fellinger J, Geiger J, Grosser K, Grulke O, Hartmann D, Hathiramani D, Höchel K, Köppen M, Laube R, Neuner U, Peng X, Rahbarnia K, Rummel K, Sieber T, Thiel S, Vorköper A, Werner A, Windisch T, Ye M Y 2015 Fusion Eng. Des. 100 468
Google Scholar
[32] Ascasibar E, Lapayese F, Soleto A, Jimenez-Denche A, Cappa A, Pons-Villalonga P, Portas A B, Martin G, Barcala J M, Garcia-Gomez R, Chamorro M, Cebrian L, Anton R, Bueno L, Reynoso C, Guisse V, Lopez-Fraguas A 2022 Rev. Sci. Instrum. 93 093508
Google Scholar
[33] Liu H F, Shimizu A, Xu Y H, Okamura S, Kinoshita S, Isobe M, Li Y B, Xiong G, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Yin D P, Wang Y, Murase T, Nakagawa S, Tang C J 2021 Nucl. Fusion 61 016014
Google Scholar
[34] Shimizu A, Kinoshita S, Isobe M, Okamura S, Ogawa K, Nakata M, Yoshimura Y, Suzuki C, Osakabe M, Murase T, Nakagawa S, Tanoue H, Xu Y, Liu H F, Liu H, Huang J, Wang X, Cheng J, Xiong G, Tang C, Yin D, Wan Y 2022 Nucl. Fusion 62 016010
Google Scholar
[35] Wang X Q, Xu Y, Shimizu A, Isobe M, Okamura S, Todo Y, Wang H, Liu H F, Huang J, Zhang X, Liu H, Cheng J, Tang C J 2021 Nucl. Fusion 61 036021
Google Scholar
[36] 黄捷, 李沫杉, 覃程, 王先驱 2022 物理学报 71 185202
Google Scholar
Huang J, Li M S, Qin C, Wang X Q 2022 Acta Phys. Sin. 71 185202
Google Scholar
[37] Liu H F, Zhang J, Xu Y H, Shimizu A, Cooper W A, Okamura S, Isobe M, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Tang C J 2023 Nucl. Fusion 63 026018
Google Scholar
[38] 苏祥, 王先驱, 符添, 许宇鸿 2023 物理学报 72 215205
Google Scholar
Su X, Wang X Q, Fu T, Xu Y H 2023 Acta Phys. Sin. 72 215205
Google Scholar
[39] 李丹, 刘海峰 2025 物理学报 74 055203
Google Scholar
Li D, Liu H F 2025 Acta Phys. Sin. 74 055203
Google Scholar
[40] Cheng J, et al. , submitted to Plasma Phys. Control. Fusion (PPCF-105174
[41] Lan H, et al. , submitted to Fusion Engineering and Design (FUSENGDES-D-25-00438
[42] 黄晓莉 2009 博士学位论文(哈尔滨: 哈尔滨工业大学)
Huang X L 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology
[43] 许亚东2019 博士学位论文(太原: 中北大学)
Xu Y D 2019 Ph. D. Dissertation (Taiyuan: North University of China
[44] 胡庆, 刘文晶, 赖小龙, 张德民 2021 电信传输原理、系统及工程(西安: 西安电子科技大学出版社) 第26页
Hu Q, Liu W J, Lai X L, Zhang D M 2021 Telecommunication Transmission Principles, Systems and Engineering (Xi'an: Xidian University Press) p26
[45] 陈力行, 陈大龙, 沈飊, 钱金平, 陈明 2024 核聚变与等离子体物理 44 105
Chen L X, Chen D L, Shen B, Qian J P, Chen M 2024 Nucl. Fusion Plasma Phys. 44 105
[46] Zhang J Z, Ji X Q, Sun T F, Liang S Y, Wang A, Wang J, Li J X, Liu J, Yang Q W 2021 ucl. Fusion Plasma Phys. 41 585 [张均钊, 季小全, 孙腾飞, 梁绍勇, 王傲, 王金, 李佳鲜, 刘健, 杨青巍 2021 核聚变与等离子体物理 41 585]
Zhang J Z, Ji X Q, Sun T F, Liang S Y, Wang A, Wang J, Li J X, Liu J, Yang Q W 2021 ucl. Fusion Plasma Phys. 41 585
[47] Shen B 2016 Fusion Eng. Des. 112 969
Google Scholar
Metrics
- Abstract views: 425
- PDF Downloads: 7
- Cited By: 0