-
SmCo12, with its large magnetic energy product, is a highly promising high-temperature permanent magnet that has attracted significant attention. However, the widespread ThMn12-type crystal structure in this system faces serious stability issues, which significantly hinder its practical engineering applications. Exploring novel SmCo12 structures that combine stability and excellent magnetic properties is crucial for overcoming this bottleneck. In this study, we systematically investigated the metastable phases of the SmCo12 system using a local particle swarm optimization algorithm combined with first-principles calculations. Theoretical calculations revealed a hexagonal phase structure (space group $P \overline{3} 1 m$) with a formation energy 90 meV/atom lower than that of the conventional ThMn12-type SmCo12. Its phonon spectrum shows no imaginary frequencies and its structure remains stable during Nosé-Hoover thermostat simulations at 1200 K, confirming its dynamic stability and thermodynamic stability. The electronic structure reveals this structureexhibits metallic characteristics, with a total magnetic moment as high as 21.81 µB/f.u. and a magnetocrystalline anisotropy constant up to 11.10 MJ/m3, significantly surpassing those of similar high-cobalt-content Sm-Co systems. Furthermore, theoretical predictions indicate that the hexagonal phase SmCo12 structure exhibits exceptionally outstanding magnetic properties, with maximum energy product, anisotropy field, and Curie temperature reaching 54.56 MGOe, 15.01 MA/m, and 1180 K, respectively. The newly discovered hexagonal SmCo12 phase provides a novel direction for addressing the stability issues of the ThMn12-type structure.
-
Keywords:
- Structure prediction /
- First principles calculations /
- High Curie temperature /
- Rare earth permanent magnets
-
[1] Matsuura Y 2006J. Magn. Magn. Mater. 303 344
[2] Coey J M D, Sun H 1990J. Magn. Magn. Mater. 87 L251
[3] Strnat K, Hoffer G, Olson J, Ostertag W, Becker J J 1967J. Appl. Phys. 38 1001
[4] Ojima T, Tomizawa S, Yoneyama T, Hori T 1977Jpn. J. Appl. Phys. 16 671
[5] Liu J F, Ding Y, Hadjipanayis G C 1999J. Appl. Phys. 85 1670
[6] Tian M B 2001Magnetic Materials (Beijing: Tsinghua University Press) p80(in Chinese) [田民波2001磁性材料(北京: 清华大学出版社) 第80页]
[7] Coey J M D 2020Engineering 6 119
[8] Liu S 2019Chin. Phys. B 28 017501
[9] Yang Y C, Kebe B, James W J, Deportes J, Yelon W 1981J. Appl. Phys. 52 2077
[10] Yang Y C 1981Acta Metall. Sin. 17 355(in Chinese) [杨应昌1981金属学报17355]
[11] Felner I, Nowik I, Seh M 1983J. Magn. Magn. Mater. 38 172
[12] Ohashi K, Tawara Y, Osugi R, Shimao M 1988J. Appl. Phys. 64 5714
[13] Harashima Y, Terakura K, Kino H, Ishibashi S, Miyake T 2016J. Appl. Phys. 120 203904
[14] Hirayama Y, Takahashi Y K, Hirosawa S, Hono K 2017Scr. Mater. 138 62
[15] Matsumoto M, Hawai T, Ono K 2020Phys. Rev. Appl. 13 064028
[16] Sun J Q, Wu X C, Que Z X, Zhang W B 2023Acta Phys. Sinica 72 180202(in Chinese) [孙敬淇, 吴绪才, 阙志雄, 张卫兵2023物理学报72 180202]
[17] Wang Y, Lv J, Zhu L, Ma Y 2010Phys. Rev. B 82 094116
[18] Wang Y, Lv J, Gao P, Ma Y 2022Acc. Chem. Res. 55 2068
[19] Kresse G, Furthmüller J 1996Comput. Mater. Sci 6 15
[20] Kresse G, Furthmüller J 1996Phys. Rev. B 54 11169
[21] Kresse G, Hafner J 1993Phys. Rev. B 47 558
[22] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865
[23] Kresse G, Joubert D 1999Phys. Rev. B 59 1758
[24] Larson P, Mazin I I, Papaconstantopoulos D A 2003Phys. Rev. B 67 214405
[25] Togo A, Chaput L, Tadano T, Tanaka I 2023J. Phys.: Condens. Matter 35 353001
[26] Ozaki T, Kino H 2005Phys. Rev. B 72045121
[27] Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987J. Magn. Magn. Mater. 67 65
[28] Ozaki T 2003Phys. Rev. B 67 155108
[29] Gong Q, Yi M, Evans R F L, Xu B X, Gutfleisch O 2019Phys. Rev. B 99 214409
[30] Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014J. Phys.: Condens. Matter 26 103202
[31] Skubic B, Hellsvik J, Nordström L, Eriksson O 2008J. Phys.: Condens. Matter 20 315203
[32] Toga Y, Matsumoto M, Miyashita S, Akai H, Doi S, Miyake T, Sakuma A 2016Phys. Rev. B 94 174433
[33] Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018npj Comput. Mater. 4 47
[34] Fu C L, Ho K M 1983Phys. Rev. B 28 5480
[35] Erdmann S, Klüner T, Sözen H İ 2023J. Magn. Magn. Mater. 572 170645
[36] Yu J, Jiang S, Sun D, Lin P, Zhang Y 2022J. Mater. Res. Technol. 18 3410
[37] Yuan Y, Yi J, Borzone G, Watson A 2011Calphad 35 416
[38] Landa A, Söderlind P, Moore E E, Perron A 2022Appl. Sci. 12 4860
[39] O’Handley R C 1999Modern magnetic materials: principles and applications (New York: Wiley) p480
[40] McGlynn E 2013Contemp. Phys. 54 115
[41] Skomski R. 2016Novel Functional Magnetic Materials (Cham: Springer) p359
[42] Buschow K H J 1977Rep. Prog. Phys. 40 1179
[43] Ochirkhuyag T, Hong S C, Odkhuu D 2022npj Comput. Mater. 8 193
[44] Körner W, Krugel G, Elsässer C 2016Sci. Rep. 6 24686
[45] Kronmüller H 1987Phys. Status Solidi B 144 385
Metrics
- Abstract views: 27
- PDF Downloads: 0
- Cited By: 0