Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction and magnetic study of a new stable SmCo12 structure

DAI Yudong LIU Yicong LI Zhenqing YANG Zhixiong ZHANG Weibing

Citation:

Prediction and magnetic study of a new stable SmCo12 structure

DAI Yudong, LIU Yicong, LI Zhenqing, YANG Zhixiong, ZHANG Weibing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • SmCo12, with its large magnetic energy product, is a highly promising high-temperature permanent magnet that has attracted significant attention. However, the widely existing ThMn12-type crystal structure in this system faces serious stability problem, which significantly hinders its practical engineering applications. Exploring a novel SmCo12 structure that combines stability and excellent magnetic properties is crucial for breaking through this bottleneck. In this study, the metastable phases of the SmCo12 system are systematically investigated in this work by using a local particle swarm optimization algorithm combined with first-principles calculations. The theoretical calculations reveal a hexagonal phase structure (space group $ P\overline{3}1m $) with a formation energy of 90 meV/atom, which is lower than that of the conventional ThMn12-type SmCo12. Its phonon spectrum shows no imaginary frequencies and its structure remains stable during Nosé-Hoover thermostat simulations at 1200 K, confirming its dynamic stability and thermodynamic stability. The electronic structure reveals that this structure exhibits metallic characteristics, with a total magnetic moment of as high as 21.81µB/f.u. and a magnetocrystalline anisotropy constant of up to 11.10 MJ/m3, significantly exceeding similar high-cobalt-content Sm-Co systems. Furthermore, theoretical predictions indicate that the hexagonal phase SmCo12 structure exhibits exceptionally outstanding magnetic properties, with maximum energy product, anisotropy field, and Curie temperature reaching 54.56 MGOe, 15.01 MA/m, and 1180 K, respectively. The newly discovered hexagonal SmCo12 phase provides a novel direction for solving the stability problem of the ThMn12-type structure.
  • 图 1  SmCo12四种候选晶体结构示意图, 红色为Sm原子, 蓝色为Co原子 (a) $ P4 mm $(No.99); (b) $ {P4}/{mmm} $(No.123); (c) ThMn12型$ {I4}/{mmm} $(No.139); (d) $ P\overline{3}1 m $(No.162)

    Figure 1.  Four candidate crystal structures of SmCo12, red represents Sm atom, blue represents Co atom: (a) $ P4 mm $(No.99); (b) $ P4/mmm $(No.123); (c) ThMn12-type $ I4/mmm $(No.139); (d) $ P\overline{3}1 m $(No.162).

    图 2  候选SmCo12结构能量随体积变化曲线

    Figure 2.  Energy-volume curve of candidate SmCo12 structures.

    图 3  二元SmmCon合金形成能及凸包图, 结构搜索候选结构标记为圆点, 稳定结构标记为星号, 亚稳态结构标记为三角形

    Figure 3.  Formation energy and convex hull of binary SmmCon alloys, candidate structures from structural search are marked as circles, stable structures as stars, and metastable structures as triangles.

    图 4  候选SmCo12结构声子谱 (a) $ P4 mm $(No.99); (b) $ P4/mmm $(No.123); (c) ThMn12型$ I4/mmm $(No.139); (d) $ P\overline{3}1 m $(No.162)

    Figure 4.  The phonon dispersion of candidate SmCo12 structures: (a) $ P4 mm $(No.99); (b) $ P4/mmm $ (No.123); (c) ThMn12-type $ I4/mmm $(No.139); (d) $ P\overline{3}1 m $(No.162).

    图 5  在1200 K下, 六方相($ P\overline{3}1 m $) SmCo12分子动力学模拟后 (a) 弛豫后晶体结构; (b) 总势能随模拟时间的变化

    Figure 5.  At 1200 K, for the hexagonal phase ($ P\overline{3}1 m $) SmCo12 after molecular dynamics simulation: (a) Relaxed crystal structure; (b) total potential energy as a function of simulation time.

    图 6  六方相($ P\overline{3}1 m $) SmCo12态密度 (a) 总态密度与各元素贡献; (b) Sm原子态密度以及各轨道贡献; (c) 6$ {k}_{1} $晶位Co原子态密度及各轨道贡献; (d) 6$ {k}_{2} $晶位Co原子态密度及各轨道贡献, 费米能级设为0 eV

    Figure 6.  The DOS of hexagonal phase ($ P\overline{3}1 m $) SmCo12: (a) The total DOS and the contribution of each element; (b) the Sm atomic DOS and the contribution of each orbital; (c) the Co atomic DOS at 6$ {k}_{1} $ crystal site and the contribution of each orbital; (d) the Co atomic DOS at the 6$ {k}_{2} $ crystal site and the contribution of each orbital. The Fermi level is set to 0 eV.

    图 7  六方相SmCo12 (a) 每个原子间交换耦合常数随间距变化曲线; (b) 随温度变化的磁化曲线

    Figure 7.  Hexagonal SmCo12: (a) Exchange coupling constants between each atom as a function of interatomic distance; (b) magnetization curve as a function of temperature.

    表 1  候选SmCo12结构的空间群、焓值、晶胞参数和晶系

    Table 1.  The candidate SmCo12 structures including their space groups, enthalpy values, unit cell parameters, and crystal systems.

    Space Group Enthalpy
    /(eV·atom–1)
    Lattice parameters/Å Wyckoff position Crystal system
    $ P4 mm $ (No.99) –6.52 a = b = 4.00, c = 10.65
    α = β = γ = 90°
    Sm: 1$ a $
    Co: 1$ {a}_{i} $; 1$ {b}_{i} $; 2$ {c}_{i} $ (i = 1, 2, 3)
    Tetragonal
    $ I4/mmm $ (No.139) –6.67 a = b = 8.89, c = 4.087
    α = β = γ = 90°
    Sm: 2$ a $
    Co: 8$ f $; 8$ i $; 8$ j $
    Tetragonal
    $ P\overline{3}1 m $ (No.162) –6.76 a = b = 4.20, c = 10.93
    α = β = 90°, γ = 120°
    Sm: 1$ b $
    Co: 6$ {k}_{1} $; 6$ {k}_{2} $
    Hexagonal
    $ P4/mmm $ (No.123) –6.79 a = b = 3.54, c = 12.13
    α = β = γ = 90°
    Sm: 1$ a $
    Co: 2$ {h}_{i} $ (i = 1, 2); 4$ i $; 2$ h $; 2$ e $
    Tetragonal
    DownLoad: CSV

    表 2  候选SmCo12结构的空间群、平衡状态下的体积、形成能及体积模量

    Table 2.  The candidate SmCo12 structures include their space groups, equilibrium volumes, formation energies, and bulk modulus.

    Space
    Group
    Volume
    3
    Formation Energy
    (meV/atom)
    Bulk module
    /GPa
    $ {E}_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}} $ $ {E}_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}}^{\mathrm{S}\mathrm{m}\mathrm{C}{\mathrm{o}}_{5}} $ $ {E}_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}}^{\mathrm{S}{\mathrm{m}}_{2}\mathrm{C}{\mathrm{o}}_{17}} $
    $ P4 mm $
    (No.99)
    173.22 0 63 67 111.00
    $ I4/mmm $
    (No.139)
    323.12 –47 16 21 145.50
    $ P\overline{3}1 m $
    (No.162)
    172.16 –137 –74 –69 131.99
    $ P4/mmm $
    (No.123)
    161.37 –167 –104 –99 154.33
    DownLoad: CSV

    表 3  VASP与OpenMX 计算六方相($ P\overline{3}1 m $$ (\mathrm{N}\mathrm{o}.162) $) SmCo12电子磁矩和单离子磁各向异性能对比

    Table 3.  A comparison of the electronic magnetic moments and single ion magnetic anisotropy energies of hexagonal ($ P\overline{3}1 m $ (No.162)) SmCo12 calculated by using VASP and OpenMX.

    Method Atom s p d $ {m}_{i/\mu \mathrm{B}} $ $ {k}_{i} $/meV
    OpenMX Co 6$ {k}_{1} $ –0.01 –0.08 1.74 1.66 0.19
    Co 6$ {k}_{2} $ 0.0 –0.06 1.84 1.76 0.46
    Sm 1$ b $ –0.01 –0.04 1.29 1.25 –11.97
    VASP Co 6$ {k}_{1} $ –0.02 –0.05 1.67 1.60 0.57
    Co 6$ {k}_{2} $ –0.01 –0.04 1.57 1.52 0.4
    Sm 1$ b $ –0.01 –0.01 –0.21 –0.23 –8.93
    DownLoad: CSV

    表 4  六方相($ P\overline{3}1 m $)SmCo12结构自旋磁矩和轨道磁矩

    Table 4.  Spin magnetic moments and orbital magnetic moments of the hexagonal phase ($ P\overline{3}1 m $) SmCo12 structure.

    AtomsOcc.$ {m}_{i}^{s}/{\mu }_{B} $$ {m}_{i}^{\mathrm{o}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}}/{\mu }_{B} $$ {m}_{i}/{\mu }_{B} $
    Co6$ {k}_{1} $1.660.071.73
    Co6$ {k}_{2} $1.760.081.84
    Sm1$ b $1.250.021.27
    DownLoad: CSV

    表 5  六方相($ P\overline{3}1 m $(No.162)) SmCo12本征磁性与ThMn12型对比

    Table 5.  Comparison of intrinsic magnetism between hexagonal($ P\overline{3}1 m $(No.162)) SmCo12 and ThMn12-type structure.

    Space Group $ {m}^{\mathrm{t}\mathrm{o}\mathrm{t}}/ $($ {\mathrm{\mu }}_{\mathrm{B}} $·f.u.–1) $ {M}_{\mathrm{s}}/ $(MA·m–1) $ (\mathrm{B}\mathrm{H}{)}_{\mathrm{m}\mathrm{a}\mathrm{x}}/ $MGOe $ {H}_{\mathrm{a}}/ $(MA·m–1) $ {T}_{\mathrm{C}}/ $K
    $ P\overline{3}1 m $ (No.162) SmCo12 21.81 1.17 54.56 15.01 1180
    ThMn12-type SmCo12 * 21.90 1.26 62.38 8.70 1150
    ThMn12-type SmCo12 [15,38,40,41] 17.4 1.0 39.60 3.91 1300
    ThMn12-type SmFe12 [38,41,44] 25.7 1.30 76.0 9.55 554
    ThMn12-type Sm(Fe0.8Co0.2)12 [15,43] 24.5 1.35 80 9.55 1100
    注: *present work.
    DownLoad: CSV
  • [1]

    Matsuura Y 2006 J. Magn. Magn. Mater. 303 344Google Scholar

    [2]

    Coey J M D, Sun H 1990 J. Magn. Magn. Mater. 87 L251Google Scholar

    [3]

    Strnat K, Hoffer G, Olson J, Ostertag W, Becker J J 1967 J. Appl. Phys. 38 1001Google Scholar

    [4]

    Ojima T, Tomizawa S, Yoneyama T, Hori T 1977 Jpn. J. Appl. Phys. 16 671Google Scholar

    [5]

    Liu J F, Ding Y, Hadjipanayis G C 1999 J. Appl. Phys. 85 1670Google Scholar

    [6]

    田民波 2001 磁性材料 (北京: 清华大学出版社) 第80页

    Tian M B 2001 Magnetic Materials (Beijing: Tsinghua University Press) p80

    [7]

    Coey J M D 2020 Engineering 6 119Google Scholar

    [8]

    Liu S 2019 Chin. Phys. B 28 017501Google Scholar

    [9]

    Yang Y C, Kebe B, James W J, Deportes J, Yelon W 1981 J. Appl. Phys. 52 2077Google Scholar

    [10]

    杨应昌 1981 金属学报 17 355

    Yang Y C 1981 Acta Metall. Sin. 17 355

    [11]

    Felner I, Nowik I, Seh M 1983 J. Magn. Magn. Mater. 38 172Google Scholar

    [12]

    Ohashi K, Tawara Y, Osugi R, Shimao M 1988 J. Appl. Phys. 64 5714Google Scholar

    [13]

    Harashima Y, Terakura K, Kino H, Ishibashi S, Miyake T 2016 J. Appl. Phys. 120 203904Google Scholar

    [14]

    Hirayama Y, Takahashi Y K, Hirosawa S, Hono K 2017 Scr. Mater. 138 62Google Scholar

    [15]

    Matsumoto M, Hawai T, Ono K 2020 Phys. Rev. Appl. 13 064028Google Scholar

    [16]

    孙敬淇, 吴绪才, 阙志雄, 张卫兵 2023 物理学报 72 180202Google Scholar

    Sun J Q, Wu X C, Que Z X, Zhang W B 2023 Acta Phys. Sin. 72 180202Google Scholar

    [17]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [18]

    Wang Y C, Lv J, Gao P Y, Ma Y M 2022 Acc Chem. Res. 55 2068Google Scholar

    [19]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci 6 15Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Larson P, Mazin I I, Papaconstantopoulos D A 2003 Phys. Rev. B 67 214405Google Scholar

    [25]

    Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys. Condens. Matter 35 353001Google Scholar

    [26]

    Ozaki T, Kino H 2005 Phys. Rev. B 72 045121Google Scholar

    [27]

    Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987 J. Magn. Magn. Mater. 67 65Google Scholar

    [28]

    Ozaki T 2003 Phys. Rev. B 67 155108Google Scholar

    [29]

    Gong Q, Yi M, Evans R F L, Xu B X, Gutfleisch O 2019 Phys. Rev. B 99 214409Google Scholar

    [30]

    Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014 J. Phys. : Condens. Matter 26 103202Google Scholar

    [31]

    Skubic B, Hellsvik J, Nordström L, Eriksson O 2008 J. Phys. : Condens. Matter 20 315203Google Scholar

    [32]

    Toga Y, Matsumoto M, Miyashita S, Akai H, Doi S, Miyake T, Sakuma A 2016 Phys. Rev. B 94 174433Google Scholar

    [33]

    Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 npj Comput. Mater. 4 47Google Scholar

    [34]

    Fu C L, Ho K M 1983 Phys. Rev. B 28 5480Google Scholar

    [35]

    Erdmann S, Klüner T, Sözen H İ 2023 J. Magn. Magn. Mater. 572 170645Google Scholar

    [36]

    Yu J B, Jiang S Y, Sun D, Lin P, Zhang Y Q 2022 J. Mater. Res. Technol. 18 3410Google Scholar

    [37]

    Yuan Y, Yi J H, Borzone G, Watson A 2011 Calphad 35 416Google Scholar

    [38]

    Landa A, Söderlind P, Moore E E, Perron A 2022 Appl. Sci. 12 4860Google Scholar

    [39]

    O’Handley R C 1999 Modern magnetic materials: principles and applications (New York: Wiley) p480

    [40]

    McGlynn E 2013 Contemp. Phys. 54 115Google Scholar

    [41]

    Skomski R. 2016 Novel Functional Magnetic Materials (Cham: Springer) p359

    [42]

    Buschow K H J 1977 Rep. Prog. Phys. 40 1179Google Scholar

    [43]

    Ochirkhuyag T, Hong S C, Odkhuu D 2022 npj Comput. Mater. 8 193Google Scholar

    [44]

    Körner W, Krugel G, Elsässer C 2016 Sci. Rep. 6 24686Google Scholar

    [45]

    Kronmüller H 1987 Phys. Status Solidi B 144 385Google Scholar

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, doi: 10.7498/aps.73.20231436
    [2] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, doi: 10.7498/aps.73.20231618
    [3] Peng Yi, Zhao Guo-Qiang, Deng Zheng, Jin Chang-Qing. Recent advances in application-oriented new generation diluted magnetic semiconductors. Acta Physica Sinica, doi: 10.7498/aps.73.20231940
    [4] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of magnetic Janus materials based on machine learning and first-principles calculations. Acta Physica Sinica, doi: 10.7498/aps.73.20241278
    [5] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20211631
    [6] Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao. First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes. Acta Physica Sinica, doi: 10.7498/aps.71.20220853
    [7] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.70.20211631
    [8] Zhong Shu-Lin, Qiu Jia-Hao, Luo Wen-Wei, Wu Mu-Sheng. First-principles study of properties of rare-earth-doped LiFePO4. Acta Physica Sinica, doi: 10.7498/aps.70.20210227
    [9] Deng Zheng, Zhao Guo-Qiang, Jin Chang-Qing. Recent progress of a new type diluted magnetic semiconductors with independent charge and spin doping. Acta Physica Sinica, doi: 10.7498/aps.68.20191114
    [10] Zheng Long-Li, Qi Shi-Chao, Wang Chun-Ming, Shi Lei. Piezoelectric, dielectric, and ferroelectric properties of high Curie temperature bismuth layer-structured bismuth titanate-tantalate (Bi3TiTaO9). Acta Physica Sinica, doi: 10.7498/aps.68.20190222
    [11] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, doi: 10.7498/aps.65.237101
    [12] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, doi: 10.7498/aps.61.036105
    [13] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, doi: 10.7498/aps.59.2051
    [14] Gu Mu, Lin Ling, Liu Bo, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. Fist-principle calculation for electronic structure of M’-GdTaO4. Acta Physica Sinica, doi: 10.7498/aps.59.2836
    [15] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.59.515
    [16] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, doi: 10.7498/aps.59.3414
    [17] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, doi: 10.7498/aps.57.2368
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, doi: 10.7498/aps.57.7794
    [19] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, doi: 10.7498/aps.57.4428
    [20] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, doi: 10.7498/aps.56.1598
Metrics
  • Abstract views:  317
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2025
  • Accepted Date:  11 June 2025
  • Available Online:  11 July 2025
  • /

    返回文章
    返回