Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on ground-state structure and neutron halo characteristics of 29Ne using complex-momentum representation method

WANG Xinghao LUO Yuxuan LIU Quan

Citation:

Research on ground-state structure and neutron halo characteristics of 29Ne using complex-momentum representation method

WANG Xinghao, LUO Yuxuan, LIU Quan
cstr: 32037.14.aps.74.20250768
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The neutron-rich nucleus 29Ne, located in the $N = 20$ “island of inversion” challenges traditional shell-model predictions by exhibiting a ground-state valence neutron configuration primarily influenced by the $2{\mathrm{p}}_{3/2}$ orbital rather than the anticipated $1{\mathrm{f}}_{7/2}$ orbital. This study aims to reveal the mechanisms behind this shell inversion and explore the potential halo structure in 29Ne, by using the interplay between weak binding, deformation, and low-$\ell$ orbital occupancy.The complex-momentum representation (CMR) method is used within a relativistic framework by integrating relativistic mean-field (RMF) theory with Woods-Saxon potentials to describe bound states, resonances, and continuum states. The model combines quadrupole deformation (β2) to analyze single-particle energy evolution, orbital mixing, and radial density distribution. Key parameters are calibrated based on experimental data, including binding energy and neutron separation energy.The key results are presented below.1) Shell inversion: In the spherical limit ($\beta_2 = 0$), the $2{\mathrm{p}}_{1/2}$ and $2{\mathrm{p}}_{3/2}$ orbitals drop below the $1{\mathrm{f}}_{7/2}$ orbital, confirming the collapse of the $N = 20$ shell gap.2) Deformation-driven halo: For β2 ≥ 0.58, the valence neutrons occupy 3/2[321] orbital (derived from 1f7/2), but due to strong l-mixing, the p3/2 component accounts for 68%. This orbital exhibits a diffuse radial density distribution, indicating a halo structure.3) Experimental consistency: The predicted ground-state spin-parity ($3/2^-$) and low separation energy (~1 MeV) align with measurements, supporting 29Ne as a deformation-induced halo.From this study, some conclusions are obtained as shown below. The 29Ne’s anomalous structure arises from the synergy of p-wave dominance and quadrupole deformation, which reduces centrifugal barriers and enhances spatial dispersion. The CMR method provides a unified description of bound and resonant states, offering new insights into the island of inversion and halo formation. Future work will include pairing correlations and experimental validation of density distributions.This work advances the understanding of exotic nuclear structures near drip lines and highlights the role of deformation in halo phenomena, which is of great significance for future experiments detecting neutron-rich nuclei.
      Corresponding author: LIU Quan, quanliu@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12475116) and the Leading Talent Team Project of Anhui Province, China (Grant No. Z010118169).
    [1]

    Haxel O, Jensen J H D, Suess H E 1949 Phys. Rev. 75 1766

    [2]

    Mayer M G 1949 Phys. Rev. 75 1969Google Scholar

    [3]

    丁斌刚, 张大立, 鲁定辉 2009 物理学报 58 865Google Scholar

    Ding B G, Zhang D L, Lu D H 2009 Acta Phys. Sin. 58 865Google Scholar

    [4]

    孙帅, 安荣, 祁淼, 曹李刚, 张丰收 2025 物理学报 74 032101Google Scholar

    Sun S, An R, Qi M, Cao L G, Zhang F S 2025 Acta Phys. Sin. 74 032101Google Scholar

    [5]

    Poves A, Retamosa J 1987 Phys. Lett. B 184 311Google Scholar

    [6]

    Tripathi V, Tabor S L, Mantica P F, et al. 2007 Phys. Rev. C 76 021301(RGoogle Scholar

    [7]

    Brown B A 2001 Prog. Part. Nucl. Phys. 47 517Google Scholar

    [8]

    Otsuka T, Honma M, Mizusaki T, Shimizu N, Utsuno Y 2001 Prog. Part. Nucl. Phys. 47 319Google Scholar

    [9]

    Liu H N, Lee J, Doornenbal P, et al. 2017 Phys. Lett. B 767 58Google Scholar

    [10]

    Zhi Q J, Zhang X P 2009 Nucl. Phys. Rev. 26 275

    [11]

    Warturbon E K, Becker J A, Brown B A 1990 Phys. Rev. C 41 1147Google Scholar

    [12]

    Moiseyev N, Corcoran C 1979 Phys. Rev. A 20 814Google Scholar

    [13]

    刘建业, 郭文军, 邢永忠, 李希国, 左维 2006 物理学报 55 1068Google Scholar

    Liu J Y, Guo W J, Xing Y Z, Li X G, Zuo W 2006 Acta Phys. Sin. 55 1068Google Scholar

    [14]

    Tanihata I, Hamagaki H, Hashimoto O, et al. 1985 Phys. Rev. Lett. 55 2676Google Scholar

    [15]

    Sagawa H 1992 Phys. Lett. B 286 7Google Scholar

    [16]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963Google Scholar

    [17]

    Pöschl W, Vretenar D, Lalazissis G A, Ring P 1997 Phys. Rev. Lett. 79 3841Google Scholar

    [18]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460Google Scholar

    [19]

    林承键, 张焕乔, 刘祖华, 吴岳伟, 杨峰, 阮明 2003 物理学报 52 823Google Scholar

    Lin C J, Zhang H Q, Liu Z H, Wu Y W, Yang F, Ruan M 2003 Acta Phys. Sin. 52 823Google Scholar

    [20]

    Zhang H F, Gao Y, Wang N, Li J Q, Zhao E G, Royer G 2012 Phys. Rev. C 85 014325Google Scholar

    [21]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(RGoogle Scholar

    [22]

    Hamamoto I 2010 Phys. Rev. C 81 021304(RGoogle Scholar

    [23]

    Tian Y J, Liu Q, Heng T H, Guo J Y 2017 Phys. Rev. C 95 064329Google Scholar

    [24]

    李楚良, 段宜武, 黄笃之 1994 物理学报 43 14Google Scholar

    Li C L, Duan Y W, Huang D Z 1994 Acta Phys. Sin. 43 14Google Scholar

    [25]

    任中洲, 徐躬耦 1991 物理学报 40 1229Google Scholar

    Ren Z Z, Xu G O 1991 Acta Phys. Sin. 40 1229Google Scholar

    [26]

    Kubota Y, Corsi A, Authelet G, et al. 2020 Phys. Rev. Lett. 125 252501Google Scholar

    [27]

    Tanihata I, Savajols H, Kanungo R 2013 Prog. Part. Nucl. Phys. 68 215Google Scholar

    [28]

    Meng J, Zhou S G 2015 J. Phys. G: Nucl. Part. Phys. 42 093101Google Scholar

    [29]

    Nakamura T, Kobayashi N, Kondo Y, et al. 2014 Phys. Rev. Lett. 112 142501Google Scholar

    [30]

    Hong J, Bertulani C A, Kruppa A T 2017 Phys. Rev. C 96 064603Google Scholar

    [31]

    Kobayashi N, Nakamura T, Kondo Y, et al. 2016 Phys. Rev. C 93 014613Google Scholar

    [32]

    Li J G, Michel N, Li H H, Zuo W 2022 Phys. Lett. B 832 137225Google Scholar

    [33]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29Google Scholar

    [34]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Rev. Lett. 59 763Google Scholar

    [35]

    Taylor J R 1972 Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (New York: Wiley) pp38–55

    [36]

    Cao L J, Ma Z Y 2002 Phys. Rev. C 66 024311Google Scholar

    [37]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530Google Scholar

    [38]

    Masui H, Aoyama S, Myo T, Katō K, Ikeda K 2000 Nucl. Phys. A 673 207Google Scholar

    [39]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501Google Scholar

    [40]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323Google Scholar

    [41]

    Li Z P, Meng J, Zhang Y, Zhou S G, Savushkin L N 2010 Phys. Rev. C 81 034311Google Scholar

    [42]

    Tanaka N, Suzuki Y, Varga K 1997 Phys. Rev. C 56 562Google Scholar

    [43]

    Zhang S S, Smith M S, Arbanas G, Kozub R L 2012 Phys. Rev. C 86 032802(RGoogle Scholar

    [44]

    Zhang S S, Smith M S, Kang Z S, Zhao J 2014 Phys. Lett. B 730 30Google Scholar

    [45]

    Xu X D, Zhang S S, Signoracci A J, Smith M S, Li Z P 2015 Phys. Rev. C 92 024324Google Scholar

    [46]

    Hazi A U, Taylor H S 1970 Phys. Rev. A 1 1109Google Scholar

    [47]

    Mandelshtam V A, Ravuri T R, Taylor H S 1993 Phys. Rev. Lett. 70 1932Google Scholar

    [48]

    Mandelshtam V A, Taylor H S, Rayboy V, Moiseyev N 1994 Phys. Rev. A 50 2764Google Scholar

    [49]

    Zhang L, Zhou S G, Meng J, Zhao E G 2008 Phys. Rev. C 77 014312Google Scholar

    [50]

    杨威, 丁士缘, 孙保元 2024 物理学报 73 062102Google Scholar

    Yang W, Ding S Y, Sun B Y 2024 Acta Phys. Sin. 73 062102Google Scholar

    [51]

    Matsuo M 2001 Nucl. Phys. A 696 371Google Scholar

    [52]

    Sun T T, Zhang S Q, Zhang Y, Hu J N, Meng J 2014 Phys. Rev. C 90 054321Google Scholar

    [53]

    Sun T T, Qian L, Chen C, Ring P, Li Z P 2020 Phys. Rev. C 101 014321Google Scholar

    [54]

    Chen C, Li Z P, Li Y X, Sun T T 2020 Chin. Phys. C 44 084105Google Scholar

    [55]

    Odsuren M, Kikuchi Y, Myo T, Khuukhenkhuu G, Masui H, Katō K 2017 Phys. Rev. C 95 064305

    [56]

    Myo T, Kikuchi Y, Masui H, Katō K 2014 Prog. Part. Nucl. Phys. 79 1Google Scholar

    [57]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318Google Scholar

    [58]

    刘野, 陈寿万, 郭建友 2012 物理学报 61 112101Google Scholar

    Liu Y, Chen S W, Guo J Y 2012 Acta Phys. Sin. 61 112101Google Scholar

    [59]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502Google Scholar

    [60]

    Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S 2017 Phys. Rev. C 95 024311

    [61]

    Guo J Y, Liu Q, Niu Z M, Heng T H, Wang Z Y, Shi M, Cao X N 2018 Nucl. Phys. Rev. 35 401

    [62]

    Dai H M, Cao X N, Liu Q, et al. 2020 Nucl. Phys. Rev. 37 574

    [63]

    Luo Y X, Fossez K, Liu Q, Guo J Y 2021 Phys. Rev. C 104 014307

    [64]

    Wei Y M, Liu Q 2023 Nucl. Phys. Rev. 40 188

    [65]

    Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2001 Phys. Rev. Lett. 86 5015Google Scholar

    [66]

    Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2002 Phys. Rev. C 65 034307Google Scholar

    [67]

    Lalazissis G A, König J, Ring P 1997 Phys. Rev. C 55 540Google Scholar

    [68]

    王晓伟, 郭建友 2019 物理学报 68 092101Google Scholar

    Wang X W, Guo J Y 2019 Acta Phys. Sin. 68 092101Google Scholar

    [69]

    Ragnarsson I, Nilsson S G, Sheline R K 1978 Phys. Rep. 45 1Google Scholar

    [70]

    Butler P. A., Nazarewicz W 1996 Rev. Mod. Phys. 68 349Google Scholar

    [71]

    Luo Y X, Liu Q, Guo J Y 2023 Phys. Rev. C 108 024320Google Scholar

    [72]

    Cao X N, Ding K M, Shi M, Liu Q, Guo J Y 2020 Phys. Rev. C 102 044313Google Scholar

    [73]

    Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys. Rev. C 98 014316Google Scholar

    [74]

    孟杰 1993 物理学报 42 368Google Scholar

    Meng J 1993 Acta Phys. Sin. 42 368Google Scholar

    [75]

    Sun T T, Liu Z X, Qian L, Wang B, Zhang W 2019 Phys. Rev. C 99 054316Google Scholar

  • 图 1  复动量平面上$ \varOmega^\pi = 1/2^- $态在$ \beta_2 = 0.2 $时的单粒子谱图. 红色空心圆形、蓝色空心方形、绿色空心菱形和棕色空心三角分别代表从4条不同积分路径上分离出的共振态

    Figure 1.  Single-particle spectrum of $ \varOmega^\pi = 1/2^- $ states in the complex momentum plane at $ \beta_2 = 0.2 $. The red hollow circles, blue hollow squares, green hollow diamonds, and brown hollow triangles represent resonance states extracted from four different integration paths, respectively.

    图 2  29Ne自旋宇称$ \varOmega^\pi = 1/2^\pm $, $ 3/2^\pm $, $ 5/2^\pm $, $ 7/2^\pm $, $ 9/2^\pm $的单粒子态在$ \beta_2 = -0.1 $, $ 0 $, $ 0.1 $, $ 0.2 $下的单粒子谱. 黑色空心圆和暗红色实线分别表示动量积分的连续域边界和积分轮廓线, 其他颜色符号表示计算得到的共振态

    Figure 2.  Single-particle spectra of $ ^{29} {\rm{Ne}}$ for spin-parity $ \varOmega^\pi = 1/2^\pm $, $ 3/2^\pm $, $ 5/2^\pm $, $ 7/2^\pm $, $ 9/2^\pm $ at $ \beta_2 = -0.1 $, 0, 0.1, 0.2. The black hollow circles and dark red solid lines denote the continuum boundaries and integration contours of momentum, respectively, while other colored symbols indicate calculated resonance states.

    图 3  29Ne的单粒子能级随形变参数$ \beta_2 $的演化. 束缚能级(实线)和共振能级(虚线)用尼尔森标记$ \varOmega[Nn_z\varLambda] $标识, $ \beta_2 = 0 $处标有球形壳层标签

    Figure 3.  Evolution of single-particle energy levels in $ ^{29} {\rm{Ne}}$ as a function of deformation parameter $ \beta_2 $. Bound levels (solid lines) and resonance levels (dashed lines) are labeled with Nilsson notation $ \varOmega[Nn_z\varLambda] $, with spherical shell-model labels marked at $ \beta_2 = 0 $.

    图 4  29Ne中$ 3/2[321] $单粒子态的主要球基组分占比随$ \beta_2 $的演化

    Figure 4.  Percentage contributions of major spherical components to the $ 3/2[321] $ single-particle state in $ ^{29} {\rm{Ne}}$ as a function of $ \beta_2 $.

    图 5  $ \beta_2 = 0.6 $时, 29Ne中$ 3/2[321] $轨道、$ 1/2[310] $轨道和$ 5/2[202] $轨道的径向密度分布

    Figure 5.  Radial density distributions of the $ 3/2[321] $, $ 1/2[310] $, and $ 5/2[202] $ orbitals in $ ^{29} {\rm{Ne}}$ at $ \beta_2 = 0.6 $.

  • [1]

    Haxel O, Jensen J H D, Suess H E 1949 Phys. Rev. 75 1766

    [2]

    Mayer M G 1949 Phys. Rev. 75 1969Google Scholar

    [3]

    丁斌刚, 张大立, 鲁定辉 2009 物理学报 58 865Google Scholar

    Ding B G, Zhang D L, Lu D H 2009 Acta Phys. Sin. 58 865Google Scholar

    [4]

    孙帅, 安荣, 祁淼, 曹李刚, 张丰收 2025 物理学报 74 032101Google Scholar

    Sun S, An R, Qi M, Cao L G, Zhang F S 2025 Acta Phys. Sin. 74 032101Google Scholar

    [5]

    Poves A, Retamosa J 1987 Phys. Lett. B 184 311Google Scholar

    [6]

    Tripathi V, Tabor S L, Mantica P F, et al. 2007 Phys. Rev. C 76 021301(RGoogle Scholar

    [7]

    Brown B A 2001 Prog. Part. Nucl. Phys. 47 517Google Scholar

    [8]

    Otsuka T, Honma M, Mizusaki T, Shimizu N, Utsuno Y 2001 Prog. Part. Nucl. Phys. 47 319Google Scholar

    [9]

    Liu H N, Lee J, Doornenbal P, et al. 2017 Phys. Lett. B 767 58Google Scholar

    [10]

    Zhi Q J, Zhang X P 2009 Nucl. Phys. Rev. 26 275

    [11]

    Warturbon E K, Becker J A, Brown B A 1990 Phys. Rev. C 41 1147Google Scholar

    [12]

    Moiseyev N, Corcoran C 1979 Phys. Rev. A 20 814Google Scholar

    [13]

    刘建业, 郭文军, 邢永忠, 李希国, 左维 2006 物理学报 55 1068Google Scholar

    Liu J Y, Guo W J, Xing Y Z, Li X G, Zuo W 2006 Acta Phys. Sin. 55 1068Google Scholar

    [14]

    Tanihata I, Hamagaki H, Hashimoto O, et al. 1985 Phys. Rev. Lett. 55 2676Google Scholar

    [15]

    Sagawa H 1992 Phys. Lett. B 286 7Google Scholar

    [16]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963Google Scholar

    [17]

    Pöschl W, Vretenar D, Lalazissis G A, Ring P 1997 Phys. Rev. Lett. 79 3841Google Scholar

    [18]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460Google Scholar

    [19]

    林承键, 张焕乔, 刘祖华, 吴岳伟, 杨峰, 阮明 2003 物理学报 52 823Google Scholar

    Lin C J, Zhang H Q, Liu Z H, Wu Y W, Yang F, Ruan M 2003 Acta Phys. Sin. 52 823Google Scholar

    [20]

    Zhang H F, Gao Y, Wang N, Li J Q, Zhao E G, Royer G 2012 Phys. Rev. C 85 014325Google Scholar

    [21]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(RGoogle Scholar

    [22]

    Hamamoto I 2010 Phys. Rev. C 81 021304(RGoogle Scholar

    [23]

    Tian Y J, Liu Q, Heng T H, Guo J Y 2017 Phys. Rev. C 95 064329Google Scholar

    [24]

    李楚良, 段宜武, 黄笃之 1994 物理学报 43 14Google Scholar

    Li C L, Duan Y W, Huang D Z 1994 Acta Phys. Sin. 43 14Google Scholar

    [25]

    任中洲, 徐躬耦 1991 物理学报 40 1229Google Scholar

    Ren Z Z, Xu G O 1991 Acta Phys. Sin. 40 1229Google Scholar

    [26]

    Kubota Y, Corsi A, Authelet G, et al. 2020 Phys. Rev. Lett. 125 252501Google Scholar

    [27]

    Tanihata I, Savajols H, Kanungo R 2013 Prog. Part. Nucl. Phys. 68 215Google Scholar

    [28]

    Meng J, Zhou S G 2015 J. Phys. G: Nucl. Part. Phys. 42 093101Google Scholar

    [29]

    Nakamura T, Kobayashi N, Kondo Y, et al. 2014 Phys. Rev. Lett. 112 142501Google Scholar

    [30]

    Hong J, Bertulani C A, Kruppa A T 2017 Phys. Rev. C 96 064603Google Scholar

    [31]

    Kobayashi N, Nakamura T, Kondo Y, et al. 2016 Phys. Rev. C 93 014613Google Scholar

    [32]

    Li J G, Michel N, Li H H, Zuo W 2022 Phys. Lett. B 832 137225Google Scholar

    [33]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29Google Scholar

    [34]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Rev. Lett. 59 763Google Scholar

    [35]

    Taylor J R 1972 Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (New York: Wiley) pp38–55

    [36]

    Cao L J, Ma Z Y 2002 Phys. Rev. C 66 024311Google Scholar

    [37]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530Google Scholar

    [38]

    Masui H, Aoyama S, Myo T, Katō K, Ikeda K 2000 Nucl. Phys. A 673 207Google Scholar

    [39]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501Google Scholar

    [40]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323Google Scholar

    [41]

    Li Z P, Meng J, Zhang Y, Zhou S G, Savushkin L N 2010 Phys. Rev. C 81 034311Google Scholar

    [42]

    Tanaka N, Suzuki Y, Varga K 1997 Phys. Rev. C 56 562Google Scholar

    [43]

    Zhang S S, Smith M S, Arbanas G, Kozub R L 2012 Phys. Rev. C 86 032802(RGoogle Scholar

    [44]

    Zhang S S, Smith M S, Kang Z S, Zhao J 2014 Phys. Lett. B 730 30Google Scholar

    [45]

    Xu X D, Zhang S S, Signoracci A J, Smith M S, Li Z P 2015 Phys. Rev. C 92 024324Google Scholar

    [46]

    Hazi A U, Taylor H S 1970 Phys. Rev. A 1 1109Google Scholar

    [47]

    Mandelshtam V A, Ravuri T R, Taylor H S 1993 Phys. Rev. Lett. 70 1932Google Scholar

    [48]

    Mandelshtam V A, Taylor H S, Rayboy V, Moiseyev N 1994 Phys. Rev. A 50 2764Google Scholar

    [49]

    Zhang L, Zhou S G, Meng J, Zhao E G 2008 Phys. Rev. C 77 014312Google Scholar

    [50]

    杨威, 丁士缘, 孙保元 2024 物理学报 73 062102Google Scholar

    Yang W, Ding S Y, Sun B Y 2024 Acta Phys. Sin. 73 062102Google Scholar

    [51]

    Matsuo M 2001 Nucl. Phys. A 696 371Google Scholar

    [52]

    Sun T T, Zhang S Q, Zhang Y, Hu J N, Meng J 2014 Phys. Rev. C 90 054321Google Scholar

    [53]

    Sun T T, Qian L, Chen C, Ring P, Li Z P 2020 Phys. Rev. C 101 014321Google Scholar

    [54]

    Chen C, Li Z P, Li Y X, Sun T T 2020 Chin. Phys. C 44 084105Google Scholar

    [55]

    Odsuren M, Kikuchi Y, Myo T, Khuukhenkhuu G, Masui H, Katō K 2017 Phys. Rev. C 95 064305

    [56]

    Myo T, Kikuchi Y, Masui H, Katō K 2014 Prog. Part. Nucl. Phys. 79 1Google Scholar

    [57]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318Google Scholar

    [58]

    刘野, 陈寿万, 郭建友 2012 物理学报 61 112101Google Scholar

    Liu Y, Chen S W, Guo J Y 2012 Acta Phys. Sin. 61 112101Google Scholar

    [59]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502Google Scholar

    [60]

    Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S 2017 Phys. Rev. C 95 024311

    [61]

    Guo J Y, Liu Q, Niu Z M, Heng T H, Wang Z Y, Shi M, Cao X N 2018 Nucl. Phys. Rev. 35 401

    [62]

    Dai H M, Cao X N, Liu Q, et al. 2020 Nucl. Phys. Rev. 37 574

    [63]

    Luo Y X, Fossez K, Liu Q, Guo J Y 2021 Phys. Rev. C 104 014307

    [64]

    Wei Y M, Liu Q 2023 Nucl. Phys. Rev. 40 188

    [65]

    Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2001 Phys. Rev. Lett. 86 5015Google Scholar

    [66]

    Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2002 Phys. Rev. C 65 034307Google Scholar

    [67]

    Lalazissis G A, König J, Ring P 1997 Phys. Rev. C 55 540Google Scholar

    [68]

    王晓伟, 郭建友 2019 物理学报 68 092101Google Scholar

    Wang X W, Guo J Y 2019 Acta Phys. Sin. 68 092101Google Scholar

    [69]

    Ragnarsson I, Nilsson S G, Sheline R K 1978 Phys. Rep. 45 1Google Scholar

    [70]

    Butler P. A., Nazarewicz W 1996 Rev. Mod. Phys. 68 349Google Scholar

    [71]

    Luo Y X, Liu Q, Guo J Y 2023 Phys. Rev. C 108 024320Google Scholar

    [72]

    Cao X N, Ding K M, Shi M, Liu Q, Guo J Y 2020 Phys. Rev. C 102 044313Google Scholar

    [73]

    Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys. Rev. C 98 014316Google Scholar

    [74]

    孟杰 1993 物理学报 42 368Google Scholar

    Meng J 1993 Acta Phys. Sin. 42 368Google Scholar

    [75]

    Sun T T, Liu Z X, Qian L, Wang B, Zhang W 2019 Phys. Rev. C 99 054316Google Scholar

  • [1] Yang Wei, Ding Shi-Yuan, Sun Bao-Yuan. Relativistic Hartree-Fock model of nuclear single-particle resonances based on real stabilization method. Acta Physica Sinica, 2024, 73(6): 062102. doi: 10.7498/aps.73.20231632
    [2] Jiang Chuan-Dong, Wang Qi, Du Guan-Feng, Yi Xiao-Feng, Tian Bao-Feng. Characteristics of surface nuclear magnetic off-resonance signal and complex envelope inversion. Acta Physica Sinica, 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [3] Zhang Bing, Liu Zhi-Xue, Xu Wan-Chao. Lasing without inversion with considering spontaneously generated coherence. Acta Physica Sinica, 2013, 62(16): 164207. doi: 10.7498/aps.62.164207
    [4] Liu Ye, Chen Shou-Wan, Guo Jian-You. Research on the single-particle resonant states by the complex scaling method. Acta Physica Sinica, 2012, 61(11): 112101. doi: 10.7498/aps.61.112101
    [5] Wang Gang, Fang Xiang-Zheng, Guo Jian-You. Analysis of shape evolution for Pt isotopes with relativistic mean field theory. Acta Physica Sinica, 2012, 61(10): 102101. doi: 10.7498/aps.61.102101
    [6] Sui Bing-Cai, Fang Liang, Zhang Chao. Conductance of single-electron transistor with single island. Acta Physica Sinica, 2011, 60(7): 077302. doi: 10.7498/aps.60.077302
    [7] Chen Xing-Peng, Wang Nan. Ground state properties of Rn isotopes within the relativistic mean field theory. Acta Physica Sinica, 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [8] Lü Hong, Ke Xi-Zheng. Scattering of a beam with orbital angular momentum by a single sphere. Acta Physica Sinica, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [9] Dong Jian-Min, Li Jun-Qing, Su Xin-Ning, Wang Yan-Zhao, Zhang Hong-Fei, Zuo Wei. Influence of electron gas on nuclear structure in compact objects. Acta Physica Sinica, 2009, 58(4): 2294-2299. doi: 10.7498/aps.58.2294
    [10] Chen Li, Cheng Yu-Min. Complex variable reproducing kernel particle method for transient heat conduction problems. Acta Physica Sinica, 2008, 57(10): 6047-6055. doi: 10.7498/aps.57.6047
    [11] Chen Li, Cheng Yu-Min. Reproducing kernel particle method with complex variables for elasticity. Acta Physica Sinica, 2008, 57(1): 1-10. doi: 10.7498/aps.57.1
    [12] Zhang Li, Zhou Shan-Gui, Meng Jie, Zhao En-Guang. Real stabilization method for single particle resonances. Acta Physica Sinica, 2007, 56(7): 3839-3844. doi: 10.7498/aps.56.3839
    [13] Liu Jian-Ye, Zuo Wei, Lee Xi-Guo, Xing Yong-Zhong. Isospin effect in the nuclear reaction induced by neutron-halo nuclei. Acta Physica Sinica, 2007, 56(3): 1339-1346. doi: 10.7498/aps.56.1339
    [14] Liao Gao-Hua, Weng Jia-Qiang, Cheng Li-Chun, Fang Jin-Qing. Simulation study on single particle in controlling halo-chaos. Acta Physica Sinica, 2005, 54(1): 35-42. doi: 10.7498/aps.54.35
    [15] Luo Xiang-Dong, Zheng Ren-Rong, Zhu Shun-Quan. Signature inversion in odd-odd nuclei in the mass region A=100. Acta Physica Sinica, 2003, 52(8): 1891-1894. doi: 10.7498/aps.52.1891
    [16] Shen ShuiFa, Shi ShuangHui, Gu JiaHui, Liu JingYi, Shen WenQing. On the mechanism of signature inversion in the yrast band of 84Rb. Acta Physica Sinica, 2003, 52(1): 48-52. doi: 10.7498/aps.52.48
    [17] WEN JIA-YAN, ZHENG REN-RONG, ZHU SHUN-QUAN. CALCULATION OF YRAST BANDS FOR ODD-ODD NUCLEI IN A=80 REGION. Acta Physica Sinica, 1999, 48(3): 433-437. doi: 10.7498/aps.48.433
    [18] ZHENG SHAO-BAI, A. J. WOOTTON. TEST PARTICLE DIFFUSION ACROSS A SINGLE ISLAND IN A TOKAMAK. Acta Physica Sinica, 1990, 39(1): 94-100. doi: 10.7498/aps.39.94
    [19] LIN ZUN-QI, CHEN WEN-HUA, YU WEN-YAN, TAN WEI-HAN, ZHENG YU-XIA, WANG GUAN-ZHI, GU MIN, ZHANG HUI-HUANG, CHENG RUI-HUA, CUI JI-XIU, DENG XI-MING. POPULATION INVERSION OF ENERGY LEVELS OF MgXI 1s3p AND 1s4p UNDER THE CONDITION OF AVERAGE HIGH TEMPERATURE AND HIGH ELECTRON DENSITY. Acta Physica Sinica, 1988, 37(8): 1236-1243. doi: 10.7498/aps.37.1236
    [20] ЭНЕРГЕТИЧЕСКИЕ УРОВНИ ЯДЕР,ИМЕЮЩИХ ОДИН НУКЛОН ВНЕ ЗАПОЛНЕННЫХ ОБОЛОЧЕК. Acta Physica Sinica, 1959, 15(8): 447-448. doi: 10.7498/aps.15.447
Metrics
  • Abstract views:  348
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2025
  • Accepted Date:  25 July 2025
  • Available Online:  12 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回