-
Freezing of multicomponent droplets and thin films is ubiquitous in natural and engineered settings. Prior studies on multicomponent droplets, including Marangoni-driven self-lifting droplets and soap-bubble freezing, have established the roles of interfacial flow and solute redistribution and often exhibit a snow-globe effect with migrating ice particles. Curvature and field-of-view constraints in droplet systems hinder continuous observation of a single object. Here, leveraging the comparability of interfacial heat and mass transport between droplets and films, we employ a flat isopropanol–water binary film on a cooled substrate to enable high-resolution, time-resolved in situ microscopy of single separated ice flakes across a range of substrate supercooling (ΔT). Experiments show that with increasing ΔT, the external shape of ice flakes evolves from hexagonal pyramidal to dodecagonal pyramidal and ultimately toward a near-conical form, accompanied by reduced transparency. We quantify morphological evolution using a shape factor β and qualitatively distinguish crystal-structure differences with combined bright- and dark-field microscopy. A minimal model that couples solute and thermal diffusion with Marangoni stresses rationalizes the observations: solute-concentration gradients primarily drive structural evolution, while the competition between advection and diffusion governs anisotropic growth. These results provide mechanistic insight into interfacial freezing dynamics of multicomponent liquid films and establish flat-film microscopy as a platform for single-flake kinetics.
-
Keywords:
- Binary liquid film /
- Solute diffusion /
- Thermal diffusion /
- Marangoni effect
-
[1] Wu X, Chu F, Ma Q, Zhu B 2017 Appl. Therm. Eng. 118 448
[2] Li L, Liu Z, Li Y, Dong Y 2017 Int. J. Heat Mass Transfer 113 166
[3] Li K, Miao Y, Xia D, Liu N, Zhang H, Dou B, He Q, Zhao Y, Li C, Mohtaram S 2024 Appl. Therm. Eng.248 123282
[4] Wang P, Zhou W, Bao Y, Li H 2018 Struct Control Health Monit. 25 e2138
[5] Wei K, Yang Y, Zuo H, Zhong D 2020 Wind Energy 23 433
[6] Cebeci T, Kafyeke F 2003 Annu. Rev. Fluid Mech. 35 11
[7] Cao Y, Wu Z, Su Y, Xu Z 2015 Prog. Aeronaut. Sci. 74 62
[8] Hu H-B, He Q, Yu S-X, Zhang Z-Z, Song D 2016 Acta Phys. Sin. 65 104703(in Chinese) [胡海宝,何强,于思晓,张兆珠,宋东 2016 物理学报 57 4667]
[9] He Z, Zhuo Y, Wang F, He J, Zhang Z 2019 Soft Matter 15 2905
[10] Ji K, Rui X, Li L, Leblond A, McClure G 2015 Comput. Struct. 157 153
[11] Gurganus C, Kostinski A B, Shaw R A 2011 J. Phys. Chem. Lett. 2 1449
[12] Gurganus C, Kostinski A B, Shaw R A 2013 J. Phys. Chem. C 117 6195
[13] Inada T, Tomita H, Koyama T 2014 Int. J. Refrig. 40 294
[14] Fletcher N H 1958 J. Chem. Phys. 29 572
[15] Wildeman S, Sterl S, Sun C, Lohse D 2017 Phys. Rev. Lett. 118 084101
[16] Jung S, Tiwari M K, Doan N V, Poulikakos D 2012 Nat. Commun. 3 615
[17] Wang Y, Cheng Y 2019 Int. J. Heat Mass Transfer 140 1023
[18] Peppin S S L, Elliott J A W, Worster M G 2006 J. Fluid Mech. 554 147
[19] Zhao Y, Yan Z, Zhang H, Yang C, Cheng P 2021 Int. J. Heat Mass Transfer 165 120609
[20] Marín A G, Enríquez O R, Brunet P, Colinet P, Snoeijer J H 2014 Phys. Rev. Lett. 113 054301
[21] Yan X, Au S C Y, Chan S C, Chan Y L, Leung N C, Wu W Y, Sin D T, Zhao G, Chung C H Y, Mei M, Yang Y, Qiu H, Yao S 2024 Nat. Commun. 15 1567
[22] Lyu S, Zhu X, Legendre D, Sun C 2023 Droplet 2 e90
[23] Fang W-Z, Zhu F, Zhu L, Tao W-Q, Yang C 2022 Commun. Phys. 5 51
[24] Jin P, Yan X, Hoque M J, Rabbi K F, Sett S, Ma J, Li J, Fang X, Carpenter J, Cai S, Tao W, Miljkovic N 2022 Cell Rep. Phys. Sci. 3 100894
[25] Zhang X, Liu X, Wu X M, Min J C 2020 J. Eng. Thermophys. 41 402 (in Chinese) [张旋, 刘鑫, 吴晓敏, 闵敬春 2020 工程热物理学报 41 402]
[26] Dong Q-Q, Hu H-B, Chen S-Q, He Q, Bao L-Y 2018 Acta Phys. Sin. 67 054702 (in Chinese) [董琪琪,胡海豹,陈少强,何强,鲍路瑶 2018 物理学报 67 054702]
[27] Ivall J, Hachem M, Coulombe S, Servio P 2015 Cryst. Growth Des. 15 3969
[28] Zhao Y, Yang C, Cheng P 2021 Appl. Phys. Lett. 118 14
[29] Jiang Y, Zhao Y, Zhang H, Yang C, Cheng P 2024 Cell Rep. Phys. Sci. 5 4
[30] Zeng H, Wakata Y, Chao X, Li M, Sun C 2023 J. Colloid and Interf. Sci. 648 736
[31] Dang Q, Song M, Dang C, Zhan T, Zhang L 2022 Langmuir 38 7846
[32] Miao Y, Zhao Y, Gao M, Yang L, Yang C 2022 Appl. Phys. Lett. 120 091602
[33] Chu F, Li S, Zhao C, Feng Y, Lin Y, Wu X, Yan X, Miljkovic N 2024 Nat. Commun. 15 2249
[34] Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D 2015 Nature 527 82
[35] Graeber G, Schutzius T M, Eghlidi H, Poulikakos D 2017 Proc. Natl. Acad. Sci. 114 11040
[36] Zhuo Y, Xiao S, Håkonsen V, He J, Zhang Z 2020 ACS Mater. Lett. 2 616
[37] Zhu Z, Zhang X, Zhao Y, Huang X, Yang C 2022 Int. J. Therm. Sci. 171 107241
[38] Lambley H, Graeber G, Vogt R, Gaugler L C, Baumann E, Schutzius T M, Poulikakos D 2023 Nat. Phys.19 649
[39] Chu F Q, Wu X M, Zhu Y 2017 J. Eng. Thermophys. 38 352(in Chinese) [褚福强, 吴晓敏, 朱毅 2017 工程热物理学报 38 352]
[40] Chen R-H, Phuoc T X, Martello D 2011 Int. J. Heat Mass Transfer 54 2459
[41] Bhuiyan M H U, Saidur R, Amalina M A, Mostafizur R M, Islam A 2015 Procedia Eng. 105 431
[42] Ahmadi S F, Nath S, Kingett C M, Yue P, Boreyko J B 2019 Nat. Commun. 10 2531
[43] Wang F, Chen L, Li Y, Huo P, Gu X, Hu M, Deng D 2024 Phys. Rev. Lett. 132 014002
[44] Wang F, Zeng H, Du Y, Tang X, Sun C 2024 arXiv:2407.20555v1 [physics.flu-dyn]
[45] Moore M R, Mughal M S, Papageorgiou D T 2017 J. Fluid Mech. 817 455
[46] Thiévenaz V, Josserand C, Séon T 2020 Phys. Rev. Fluids 5 041601
[47] Schremb M, Campbell J M, Christenson H K, Tropea C 2017 Langmuir 33 4870
[48] Campbell J M, Sandnes B, Flekkøy E G, Måløy K J 2022 Cryst. Growth Des. 22 2433
[49] Babich A, Bashkatov A, Yang X, Mutschke G, Eckert K 2023 Int. J. Heat Mass Transfer 215 124466
[50] Tokgoz S, Geisler R, van Bokhoven L J A, Wieneke B 2012 Meas. Sci. Technol. 23 115302
[51] Zhang M, Gao C, Ye B, Tang J, Jiang B 2019 Cryobiology 86 47
[52] Li J-Q, Rahman M, Patel S, Bogner R H, Fan T-H 2022 Cryst. Growth Des. 22 6917
[53] Kurz W, Fisher D J 1992 Fundamentals of Solidification 5th Edition (Switzerland: Trans Tech Publication Ltd) pp56-59
[54] Libbrecht K 2017 Annu. Rev. Mater. Res. 47 271
[55] Zhao Y, Guo Q, Lin T, Cheng P 2020 Int. J. Heat Mass Transfer 159 120074
[56] Lohse D, Zhang X 2020 Nat. Rev. Phys. 2 426
[57] Kitahata H, Yoshinaga N 2018 J. Chem. Physi. 148 134906
[58] Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444
[59] Dehaoui A, Issenmann B, Caupin F 2015 Proc. Natl. Acad. Sci. 112 12020
[60] Pothoczki S, Pethes I, Pusztai L, Temleitner L, Csókás D, Kohara S, Ohara K, Bakó I 2021 J. Mol. Liq. 329 115592
Metrics
- Abstract views: 69
- PDF Downloads: 5
- Cited By: 0