Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bouncing behavior of microbubbles in rigid capillary tube

LI Xiuru LIU Yalu MA Jiayu WU Yuting WANG Chenghui MO Runyang

Citation:

Bouncing behavior of microbubbles in rigid capillary tube

LI Xiuru, LIU Yalu, MA Jiayu, WU Yuting, WANG Chenghui, MO Runyang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This study systematically investigates the bouncing behavior and dynamics of microbubbles under ultrasound excitation within a rigid capillary in order to offer quantitative insights into their oscillation characteristics, migration trajectories, and phase modulation mechanisms for applications in microfluidics, contrast-enhanced ultrasound imaging, and controlled drug delivery. A high-speed imaging system is employed to track the motion of single-, double-, and triple-bubble systems in a viscoelastic medium inside a capillary with a 0.5-mm inner diameter. Under a 28-kHz ultrasound field, bubble dynamics are captured at 100,000 frames per second. Image processing techniques, including dynamic threshold segmentation and morphological operations, are employed to extract bubble contours and centroid trajectories. Spectral analysis via fast Fourier transform (FFT) is performed to identify oscillation frequencies and modulation characteristics. Experimental results show that a single bubble undergoes periodic lateral migration, with oscillation frequency slightly below the driving frequency, and that sideband distribution in its spectrum is asymmetric. In the two-bubble system, five different dynamic stages are identified: initial suppression, accelerated migration, interaction dominance, position exchange, and a secondary approach to the wall. The bubbles oscillate at a common dominant frequency of 27.32 kHz but maintain phase difference. Modulation sidebands of approximately 0.3 kHz are observed, indicating nonlinear coupling. The three-bubble system exhibits more complex spatiotemporal evolution, including sequential migration and transitions between triangular and mirror-symmetric configurations. A notable sideband at 0.1 kHz suggests that multi-bubble synergy enhances nonlinear behavior. The tube diameter and fluid viscosity are found to influence the bouncing period through added mass effects and viscous energy dissipation, respectively. The period increases significantly with tube diameter decreasing, and decreases with fluid viscosity lessening. Theoretical modeling incorporates the mirror bubble effect into the coupled Keller-Miksis equations to account for wall confinement, thus successfully simulating the oscillation and translation of confined microbubbles. Numerical analysis further indicates that inter-bubble distance, wall proximity, and medium viscosity modulate the dynamic behavior of the system. Specifically, the bubble resonance frequency is regulated by inter-bubble distance and wall confinement. The two-bubble system exhibits both in-phase and out-of-phase modes, with the latter being more sensitive to distance variation. Near the wall, the oscillation frequency decreases, and the phase difference attenuation accelerates. Increasing medium viscosity will weaken the phase coupling between bubbles, an effect which is particularly evident for smaller bubbles. This study not only enhances the understanding of multi-bubble synergistic effects in confined spaces but also provides a theoretical foundation and technical reference for optimizing ultrasound contrast agents, designing microfluidic devices, and developing targeted therapies in biomedicine.
  • 图 1  实验装置图像

    Figure 1.  Experimental setup schematic.

    图 2  超声场信号 (a) 波形图; (b) 信号幅度谱

    Figure 2.  Ultrasonic field signals: (a) Waveform diagram; (b) signal amplitude spectrum.

    图 3  单泡在管内弹跳的连续时序图像

    Figure 3.  Sequential images of single bubble bouncing in the capillary tube.

    图 4  不同时段单泡振荡行为 (a) 0—14 ms半径时域变化; (b) 0—14 ms频谱分析; (c) 30—44 ms半径时域变化; (d) 30—44 ms频谱分析

    Figure 4.  Oscillation behavior of single bubble at different time intervals: (a) Radius temporal variation during 0–14 ms; (b) spectral analysis during 0–14 ms; (c) radius temporal variation during 30–44 ms; (d) spectral analysis during 30–44 ms.

    图 5  不同时段单泡平动行为 (a) 0—14 ms时段x方向位移; (b) 0—14 ms时段x方向速度; (c) 30—44 ms时段y方向位移; (d) 30—44 ms时段y方向速度

    Figure 5.  Translational behavior of single bubble at different time intervals: (a) x-direction displacement during 0–14 ms; (b) x-direction velocity during 0–14 ms; (c) y-direction displacement during 30–44 ms; (d) y-direction velocity during 30–44 ms.

    图 6  双泡在管内弹跳的连续时序图像

    Figure 6.  Sequential images of dual-bubble bouncing in the capillary tube.

    图 7  双泡半径时域变化(a), (c)及频谱分析(b), (d)

    Figure 7.  (a), (c) Temporal radius variations and (b), (d) spectral analysis of dual-bubble system.

    图 8  两泡在管内弹跳的(a), (c)位置及(b), (d)速度变化

    Figure 8.  (a), (c) Position and (b), (d) velocity variations of two bubbles bouncing in the tube.

    图 9  三泡在管内弹跳的连续时序图像

    Figure 9.  Sequential images of triple-bubble bouncing in the capillary tube.

    图 10  三泡半径时域图(a), (c), (e)及频谱分析(b), (d), (f)

    Figure 10.  (a), (c), (e) Temporal radius profiles and (b), (d), (f) spectral analysis of triple-bubble system.

    图 11  三泡在管内弹跳的(a), (c)位置及(b), (d)速度变化

    Figure 11.  (a), (c) Position and (b), (d) velocity variations of three bubbles bouncing in the tube.

    图 12  (a)管径及(b)黏度对单泡弹跳周期的影响

    Figure 12.  Effects of (a) tube diameter and (b) viscosity on the period of single bubble bouncing.

    图 13  理论模型与实验对照 (a) 单泡模型图($ {R_{10}} = 142.7 \;{\text{μm}} $, $ {l_{{1 \text{a}}}} = 575.8 \;{\text{μm}} $, $ {l_{{1 \text{b}}}} = 424.2 \;{\text{μm}} $, $ \left( {{x_1}, {y_1}} \right) =\left( 893.9 \;{\text{μm}}, $$ 833.3 \;{\text{μm}} \right) $); (b) 双泡模型图($ {R_{10}} = 157.5 \;{\text{μm}} $, $ {R_{20}} = 159.6 \;{\text{μm}} $, $ {l_{{1 \text{a}}}} = 575.8 \;{\text{μm}}$, $ {l_{{1 \text{b}}}} = 424.2 \;{\text{μm}} $, $ {l_{2{\text{a}}}} = 393.9 \;{\text{μm}} $, $ {l_{{2 \text{b}}}} = $$ 606.1 \;{\text{μm}} $, $ {D_{12}} = 1136.4 \;{\text{μm}} $, $ \left( {{x_1}, {y_1}} \right) = \left( {814.7 \;{\text{μm}}, 1363.6 \;{\text{μm}}} \right) $, $ \left( {{x_2}, {y_2}} \right) = \left( {1009.9 \;{\text{μm}}, 242.4 \;{\text{μm}}} \right) $); (c) 单泡振荡特性; (d) 双泡振荡特性; (e) 单泡平动特性; (f) 双泡平动特性

    Figure 13.  Comparison between theoretical model and experimental results: (a) Single-bubble model ($ {R_{10}} = 142.7 \;{\text{μm}} $, $ {l_{{1 \text{a}}}} = 575.8 \;{\text{μm}} $, $ {l_{{1 \text{b}}}} = 424.2 \;{\text{μm}} $, $ \left( {{x_1}, {y_1}} \right) = \left( {893.9 \;{\text{μm}}, 833.3 \;{\text{μm}}} \right) $); (b) dual-bubble model ($ {R_{10}} = 157.5 \;{\text{μm}} $, $ {R_{20}} = 159.6 \;{\text{μm}} $, $ {l_{{1 \text{a}}}} = 575.8 \;{\text{μm}} $, $ {l_{{1 \text{b}}}} = 424.2 \;{\text{μm}} $, $ {l_{2{\text{a}}}} = 393.9 \;{\text{μm}} $, $ {l_{{2 \text{b}}}} = 606.1 \;{\text{μm}} $, $ {D_{12}} = 1136.4 \;{\text{μm}} $, $ \left( {{x_1}, {y_1}} \right) = \left( {814.7 \;{\text{μm}}, 1363.6 \;{\text{μm}}} \right) $, $ \left( {{x_2}, {y_2}} \right) = \left( {1009.9 \;{\text{μm}}, 242.4 \;{\text{μm}}} \right) $); (c) single-bubble oscillation characteristics; (d) dual-bubble oscillation characteristics; (e) single-bubble translational behavior; (f) dual-bubble translational behavior.

    图 14  泡间距离对共振频率(a)和相位差(b)的影响

    Figure 14.  Effect of inter-bubble distance on the (a) resonance frequency and (b) phase difference.

    图 15  管壁约束对共振频率(a)和相位差(b)的影响

    Figure 15.  Effect of Wall confinement on the (a) resonance frequency and (b) phase difference.

    图 16  两泡间振荡相位差随介质黏度的变化

    Figure 16.  Variation of oscillation phase difference between two bubbles with medium viscosity.

  • [1]

    Jiang L L, Xue Z Q, Park H 2019 Int. J. Heat Mass Transf. 138 1211Google Scholar

    [2]

    Zhai H Y, Xue Z Q, Park H, Aizawa Y, Baba Y, Zhang Y 2020 J. Nat. Gas Sci. Eng. 77 103233Google Scholar

    [3]

    Chen H, Kreider W, Brayman A A, Bailey M R, Matula T J 2011 Phys. Rev. Lett. 106 034301Google Scholar

    [4]

    Miller D L, Quddus J 2000 Proc. Natl. Acad. Sci. U. S. A. 97 10179Google Scholar

    [5]

    Marmottant P, Hilgenfeldt S 2004 Proc. Natl. Acad. Sci. U. S. A. 101 9523Google Scholar

    [6]

    Liu Y, Zhou Y, Zhang W, Chen S, Liang S 2024 J. Biomed. Eng. 41 919

    [7]

    Sambo C, Liu N, Shaibu R, Ahmed A, Hashish R 2023 Geoenergy Sci. Eng. 221 111185Google Scholar

    [8]

    Mamba S S, Magniez J C, Zoueshtiagh F, Baudoin M 2018 J. Fluid Mech. 838 165Google Scholar

    [9]

    Averkiou M A, Bruce M F, Powers J E, Sheeran P S, Burn P N 2020 Ultrasound Med. Biol. 46 498Google Scholar

    [10]

    Battat S, Weitz D A, Whitesides G M 2022 Chem. Rev. 122 6921Google Scholar

    [11]

    Rasouli M R, Tabrizian M 2019 Lab Chip 19 3316Google Scholar

    [12]

    Liao A H, Ho H C, Lin Y C, Chen H K, Wang C H 2015 PLoS One. 10 e0138500Google Scholar

    [13]

    Minnaert M 1933 Philos. Mag. 16 235Google Scholar

    [14]

    Plesset M S 1949 J. Appl. Mech. 16 277Google Scholar

    [15]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [16]

    Qin S, Ferrara K W 2006 Phys. Med. Biol. 51 5065Google Scholar

    [17]

    Zhong P, Zhou Y F, Zhu S L 2001 Ultrasound Med. Biol. 27 119Google Scholar

    [18]

    Caskey C F, Stieger S M, Qin S, Dayton P A, Ferrara K W 2007 J. Acoust. Soc. Am. 122 1191Google Scholar

    [19]

    Zhang L L, Chen W Z 2024 Ultrason. Sonochem. 110 107050Google Scholar

    [20]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [21]

    Wang C, Lin S 2011 Acta Acust. 36 325

    [22]

    Zilonova E, Solovchuk M, Sheu T W H 2019 Phys. Rev. E 99 023109Google Scholar

    [23]

    Zou Q Q, Zhong X H, Zhang B Y, Gao A Y, Wang X, Li Z Y, Qin D 2023 Ultrasonics 134 107089Google Scholar

    [24]

    Fei Y J, Zhu C Y, Fu T T, Gao X Q, Ma Y G 2022 Chin. J. Chem. Eng. 50 66Google Scholar

    [25]

    Hu M, Wang F, Li Y, Chen L, Wu W, Huo P, Deng D 2025 Phys. Rev. Lett. 134 104004Google Scholar

    [26]

    Magnaudet J, Legendre D 1998 Phys. Fluids 10 550Google Scholar

    [27]

    Legendre D, Magnaudet J, Mougin G 2003 J. Fluid Mech. 497 133Google Scholar

    [28]

    Qi H Y, Liu J T, Sun X Y, Deng P, Zhang D M, Song Y X 2024 Phys. Fluids 36

    [29]

    Alt E, Banyai S, Banyai M, Koppensteiner R 2002 Thromb. Res. 107 101Google Scholar

    [30]

    Lei Z K, Dong X R, Zuo X Y, Wang C H, Wu Y R, Lin S Y, Guo J Z 2024 J. Acoust. Soc. Am. 156 3373Google Scholar

    [31]

    Guo C, Wang J, Li X H, Yang S Q, Li W H 2024 Chem. Eng. Process. 199 109765Google Scholar

    [32]

    Doinikov A A 2001 Phys. Rev. E 64 026301Google Scholar

    [33]

    Ida M 2009 Phys. Rev. E 79 016307Google Scholar

    [34]

    Sugita N, Sugiura T 2017 Ultrasonics 74 174Google Scholar

    [35]

    Regnault G, Doinikov A A, Laloy G, Mauger C, Benon P, Catheline S, Inserra C 2024 Phys. Fluids 36

  • [1] Zhang Xin-Yi, Wu Wen-Hua, Wang Jian-Yuan, Zhang Ying, Zhai Wei, Wei Bing-Bo. Motion law of cavitation bubbles in ultrasonic field and mechanism of their interaction with dendrites. Acta Physica Sinica, doi: 10.7498/aps.73.20240721
    [2] Wurilege, Naranmandula. Interaction of two bubbles with mass transfer heat transfer and diffusion effects. Acta Physica Sinica, doi: 10.7498/aps.72.20230863
    [3] Pan Wen-Tao, Wen Lin, Li Shan-Shan, Pan Zhen-Hai. Numerical study of asymmetric breakup behavior of bubbles in Y-shaped branching microchannels. Acta Physica Sinica, doi: 10.7498/aps.71.20210832
    [4] He Chuan-Hui, Liu Gao-Jie, Lou Qin. Behavior of bubble with high density ratio in a microchannel with asymmetric obstacles. Acta Physica Sinica, doi: 10.7498/aps.70.20211328
    [5] Zhang Tao-Ran, Mo Run-Yang, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong. Interaction between bubble and particle in spherical liquid cavity surround by an elastic medium. Acta Physica Sinica, doi: 10.7498/aps.69.20200764
    [6] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, doi: 10.7498/aps.68.20191198
    [7] Gao Peng-Lin, Zheng Hao, Sun Guang-Ai. Constraints of neutron star on new interaction ofspin-dependent axial-vector coupling. Acta Physica Sinica, doi: 10.7498/aps.68.20190477
    [8] Lou Qin,  Li Tao,  Yang Mo. Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel. Acta Physica Sinica, doi: 10.7498/aps.67.20181311
    [9] Zheng Jian, Zhang Duo, Jiang Bang-Hai, Lu Fang-Yun. Formation mechanism of water jets induced by the interaction between bubble and free surface. Acta Physica Sinica, doi: 10.7498/aps.66.044702
    [10] SHA Sha, Chen Zhi-Hua, Zhang Qing-Bing. Numerical investigations on the interaction of shock waves with spherical SF6 bubbles. Acta Physica Sinica, doi: 10.7498/aps.64.015201
    [11] Wang Shu-Shan, Li Mei, Ma Feng. Dynamics of the interaction between explosion bubble and free surface. Acta Physica Sinica, doi: 10.7498/aps.63.194703
    [12] Li Shuai, Zhang A-Man. Study on a rising bubble bouncing near a rigid boundary. Acta Physica Sinica, doi: 10.7498/aps.63.054705
    [13] Chen Hai-Nan, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of the interaction between solidification interface and bubble using the lattice Boltzmann method with large density ratio. Acta Physica Sinica, doi: 10.7498/aps.62.120502
    [14] Liu Yun-Long, Wang Yu, Zhang A-Man. Interaction between bubble and free surface near vertical wall with inclination. Acta Physica Sinica, doi: 10.7498/aps.62.214703
    [15] Liu Yun-Long, Zhang A-Man, Wang Shi-Ping, Tian Zhao-Li. Research on interaction between bubble and surface waves based on BEM. Acta Physica Sinica, doi: 10.7498/aps.61.224702
    [16] Zhang A-Man, Wang Chao, Wang Shi-Ping, Cheng Xiao-Da. Experimental study of interaction between bubble and free surface. Acta Physica Sinica, doi: 10.7498/aps.61.084701
    [17] Theoretical and experimental study of enhanced subharmonic emission from microbubbles with chirp excitation. Acta Physica Sinica, doi: 10.7498/aps.56.7051
    [18] CHEN LU-JUN, LIANG CHANG-HONG, WU HONG-SHI. A PERTURBATIVE VARIATIONAL ANALYSIS ON INTERAC-TION OF TWO SOLITARY WAVES IN TROUGH RESONATOR. Acta Physica Sinica, doi: 10.7498/aps.41.1745
    [19] WANG YAO-JUN. INTERACTION OF ULTRASONIC WAVE WITH VOID- CONTAINING LAYER IN SOLID. Acta Physica Sinica, doi: 10.7498/aps.41.37
    [20] QIAN ZU-WEN. SOUND INTERACTION AMONG BUBBLES IN WATER. Acta Physica Sinica, doi: 10.7498/aps.30.442
Metrics
  • Abstract views:  301
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  21 July 2025
  • Accepted Date:  08 September 2025
  • Available Online:  17 September 2025
  • /

    返回文章
    返回