Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-organization during the particle injections in binary complex plasmas under microgravity

MENG Xue DU Xinchi LIPAEV M Andrey ZOBNIN V Andrey THOMA Markus KRETSCHMER Michael YANG Wei HUANG Xiaojiang ZHOU Hongying DU Chengran

Citation:

Self-organization during the particle injections in binary complex plasmas under microgravity

MENG Xue, DU Xinchi, LIPAEV M Andrey, ZOBNIN V Andrey, THOMA Markus, KRETSCHMER Michael, YANG Wei, HUANG Xiaojiang, ZHOU Hongying, DU Chengran
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Complex plasmas are composed of ionized gas and mesoscopic particles, representing a typical non-equilibrium complex system. The particles are negatively charged due to the higher thermal velocity of the electrons and interact with each other via Yukawa interactions. As the motions of individual particles can be easily recorded by video microscopy, generic processes in liquids and solids can be studied in complex plasmas at kinetic level. Under microgravity conditions, the particles are confined in the bulk plasma and form a three-dimensional cloud. In the PK-4 Laboratory on board the International Space Station, melamine formaldehyde particles of diameter 6.8 μm and 3.4 μm are injected consecutively in the plasma discharge. Due to the electrostatic force and ion drag force, usually, the particles cannot be mixed in the same region, leading to a phase separation. During the particle injections, small particles penetrate into the cloud of big particles, self-organizing differently under various conditions. When the number density of the big particles is low, small particles form a channel in the center of the discharge tube due to the Yukawa repulsion, where the cloud of the big particles is weakly confined. When the number density of the big particles is mediate, lanes are formed during the penetration of the small particles, representing a typical nonequilibrium self-organization. When the number density of the big particles is high, dust acoustic waves are self-excited due to the two-stream instability. As the small and big particles interact with each other, the particle number density in the wave crests rises drastically. However, the wave numbers and frequencies remain unaltered. This investigation provides insights to the different self-organizations during the particle injections in three-dimensional binary complex plasmas under microgravity conditions.
  • [1]

    Melzer A 2019 Physics of Dusty Plasmas: An Introduction (Heidelberg: Springer Nature Switzerland AG)

    [2]

    Shukla P K 2001 Phys. Plasmas 8 1791

    [3]

    Klumov B A, Morfill G E, Popel S I 2005 J. Exp. Theor. Phys. 100 152

    [4]

    Rosenberg M 1993 Planet. Space Sci. 41 229

    [5]

    Goertz C K 1989 Rev. Geophys. 27 271

    [6]

    Menzel K O, Arp O, Piel A 2010 Phys. Rev. Lett. 104 235002

    [7]

    Heidemann R, Zhdanov S, Sütterlin R, Thomas H M, Morfill G E 2009 Phys. Rev. Lett. 102 135002

    [8]

    Chan C L, Lai Y J, Woon W Y, Chu H Y, I Lin 2004 Plasma Phys. Control. Fusion 47 A273

    [9]

    Steinmuller B, Dietz C, Kretschmer M, Thoma M H 2017 Phys. Plasmas 24 033705

    [10]

    Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002

    [11]

    Huang D, Baggioli M, Lu S, Ma Z, Feng Y 2023 Phys. Rev. Research 5 013149

    [12]

    Annaratone B M, Antonova T, Arnas C, Bandyopadhyay, Chaudhuri M, Du C R, Elskens Y, Ivlev A V, Morfill G E, Nosenko V, Sütterlin R K, Schwabe M, Thomas H 2010 Plasma Sources Sci. Technol. 19 065026

    [13]

    Sütterlin K R, Wysocki A, Räth C, Ivlev A V, Thomas H M, Khrapak S, Zhdanov S, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2010 Plasma Phys. Control. Fusion 52 124042

    [14]

    Lipaev A M, Naumkin V N, Khrapak S A, Usachev A D, Petrov O F, Thoma M H, Kretschmer, Du C R, Kononenko O D, Zobnin A V 2025 Phys. Rev. E 111 015209

    [15]

    Dietz C, Budak J, Kamprich T, Kretschmer M, Thoma M H 2021 Contrib. Plasma Phys. 61 e202100079

    [16]

    Ludwig P, Jung H, Kaehlert H, Joost J P, Greiner F, Moldabekov Z, Carstensen J, Sundar S, Bonitz M, Piel A 2018 Eur. Phys. J. D. 72 82

    [17]

    Liu B, Goree J, Pustylnik M Y, Thomas H M, Fortov V E, Lipaev A M, Usachev A D, Petrov O F, Zobnin A V, Thoma M H 2021 IEEE Trans. Plasma Sci. 49 2972

    [18]

    Rothermel H, Hagl T, Morfill G E, Thoma M H, Thomas H M 2002 Phys. Rev. Lett. 89 175001

    [19]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353

    [20]

    Schmitz A S, Hanstein L, Klein M, Kretschmer M, Lotz C, Shemakhin A, Thoma M H 2025 Microgravity Sci. Technol. 37 7

    [21]

    Morfill G E, Thomas H M, Konopka U M, Rothermel H M, Rubin-Zuzic M, Ivlev A V, Goree J1999 Phys. Rev. Lett. 83 1598

    [22]

    Nefedov A P, Morfill G E, Fortov V E, Thomas H M, Rothermel H, Hagl T, Ivlev A V, Zuzic M, Klumov B A, Lipaev A M, Molotkov V I, Petrov O, Gidzenko Y P, Krikalev S, Shepherd W, Ivanov A I, Roth M, Binnenbruck H, Goree J, Semenov Y P et al 2003 New J. Phys. 5 33

    [23]

    Thomas H M, Morfill G E, Fortov V E, Ivlev A V, Molotkov V I, Lipaev A M, Hagl T, Rothermel H, Khrapak S A, Suetterlin R K, Rubin-Zuzic M, Petrov O F, Tokarev V I, Krikalev S K, 2008 New J. Phys. 10 033036

    [24]

    Fortov V, Morfill G, Petrov O, Thoma M, Usachev A, Hoefner H, 2005 Plasma Phys. Control. Fusion 47 B537

    [25]

    Knapek C A, Couedel L, Dove A, Goree J, Konopka U, Melzer A, Ratynskaia S, Thoma M H, Thomas H M 2022 Plasma Phys. Control. Fusion 64 124006

    [26]

    Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 SCIENTIA SINICA Physica, Mechanica & Astronomica 55 105206 (in Chinese) [杨唯,王垚楠,梁颖悦 黄晓江 周鸿颖 郭颖 张菁 冯岩 王晓钢 张立宪 杜诚然 2025 中国科学 物理学 力学 天文学 55 105206]

    [27]

    Block D, Melzer A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 063001

    [28]

    Sütterlin K R, Wysocki A, Ivlev A V, Räth C, Thomas H M, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2009 Phys. Rev. Lett. 102 085003

    [29]

    Khrapak S A, Klumov B A, Huber P, Molotkov V I, Lipaev A M, Naumkin V N, Thomas H M, Ivlev A V, Morifll G E, Petrov O F, Fortov V E, Malentschenko Y, Volkov S. 2011 Phys. Rev. Lett. 106 205001

    [30]

    Schwabe M, Zhdanov S, Räth C, Graves D B, Thomas H M, Morfill G E 2014 Phys. Rev. Lett. 112 115002

    [31]

    Pan S, Yang W, Lipaev A M, Zobnin, A V, Li D H, Chang S, Shkaplerov A, Prokopyev S V, Thoma M, Du C R 2024 EPL 147 44001

    [32]

    Schwabe M, Rubin-Zuzic M, Zhdanov S, Thomas H M, Morfill G E 2007 Phys. Rev. Lett. 99 095002

    [33]

    Bajaj P, Khrapak S, Yaroshenko V, Schwabe M 2022 Phys. Rev. E 105 025202

    [34]

    Schwabe M, Zhdanov S K, Thomas H M, Ivlev A V, Rubin-Zuzic M, Morfill G E, Molotkov V I, Lipaev A M, Fortov V E, Reiter T 2008 New J. Phys. 10 033037

    [35]

    Sun W, Schwabe M, Thomas H M, Lipaev A M, Molotkov V I, Fortov V E, Feng Y, Lin Y F, Zhang J, Guo Y, Du C R 2018 EPL 122 55001

    [36]

    Hong X, Sun W, Schwabe M, Du C R, Duan W S 2021 Phys. Rev. E 104 025206

    [37]

    Schwabe M, Khrapak S A, Zhdanov S K, Pustylnik M Y, Räth C, Fink M, Kretschmer M, Lipaev A M, Molotkov V I, Schmitz A S, Thoma M H, Usachev A D, Zobnin A V, Padalka G I, Fortov V E, Petrov O F, Thomas H M 2020 New J. Phys. 22 083079

    [38]

    Wimmer L, Dormagen N, Klein M, Kretschmer M, Lipaev A M, Schwarz M, Usachev A D, Petrov O F, Zobnin A, Thoma M H 2025 New J. Phys. 27 033001

    [39]

    Yaroshenko V V, Khrapak S A, Pustylnik M Y, Thomas H M, Jaiswal S, Lipaev A M, Usachev A D, Petrov O F, Fortov V E 2019 Phys. Plasmas 26 053702

    [40]

    Khrapak S, Yaroshenko V 2020 Plasma Phys. Control. Fusion 62 105006

    [41]

    Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 EPL 85 45001

    [42]

    Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, G E Morfill 2010 Phys. Rev. Lett. 105 045001

    [43]

    Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002

    [44]

    Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1

    [45]

    Chakrabarti J, Dzubiella J, Löwen H 2004 Phys. Rev. E 70 012401

    [46]

    Du C R, Sütterlin K R, Jiang K, Räth C, Ivlev A V, Khrapak S, Schwabe M, H M Thomas, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Malentschenko Y, Yurtschichin F, Lonchakov Y, Morfill G E 2012 New J. Phys. 14 073058

    [47]

    Jiang K, Du C R, Sütterlin K R, Ivlev A V, Morfill G E 2010 EPL 92 65002

    [48]

    Kretschmer M, Antonova T, Zhdanov S, Thoma M 2016 IEEE Trans. Plasma Sci. 44 458

  • [1] Huang Yu-Feng, Jia Wen-Zhu, Zhang Ying-Ying, Song Yuan-Hong. Three-dimensional simulation of laser-induced Mach cones in complex plasmas under microgravity conditions. Acta Physica Sinica, doi: 10.7498/aps.73.20231849
    [2] Shi Yan, Zhang Tian-Hui. Control of self-organization: From equilibrium to non-equilibrium. Acta Physica Sinica, doi: 10.7498/aps.69.20200161
    [3] Wu Xiao-Wa, Qin Si-Qing, Xue Lei, Yang Bai-Cun, Zhang Ke. Behavior characteristics from self-organization to criticality caused by cumulative damage leading to instability of locked segments in seismogenic fault system. Acta Physica Sinica, doi: 10.7498/aps.67.20180614
    [4] Chen Ke-Ping, Lü Peng, Peng Wang. Liquid-solid phase transition of Cu-Zr eutectic alloy under microgravity condition. Acta Physica Sinica, doi: 10.7498/aps.66.068101
    [5] Xia Zhen-Chao, Wang Wei-Li, Luo Sheng-Bao, Wei Bing-Bo. Rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. Acta Physica Sinica, doi: 10.7498/aps.65.158101
    [6] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, doi: 10.7498/aps.64.124703
    [7] Xu Sheng-Hua, Zhou Hong-Wei, Wang Cai-Xia, Wang Lin-Wei, Sun Zhi-Wei. Experimental study on the capillary flow in tubes of different shapes under microgravity condition. Acta Physica Sinica, doi: 10.7498/aps.62.134702
    [8] Li Yong-Qiang, Zhang Chen-Hui, Liu Ling, Duan Li, Kang Qi. The analytical approximate solutions of capillary flow in circular tubes under microgravity. Acta Physica Sinica, doi: 10.7498/aps.62.044701
    [9] Jia Quan-Jie, Chen Yu, Tian Xue-Yan, Yao Jiang-Feng, Zhao Su-Ling, Gong Wei, Fan Xing, Xu Zheng, Zhang Fu-Jun. Study of crystalline structure change of annealing-induced self-organization in polymer field-effect transistors. Acta Physica Sinica, doi: 10.7498/aps.60.057201
    [10] Zhang Wen-Zhu, Yuan Jian, Yu Zhe, Xu Zan-Xin, Shan Xiu-Ming. Study of the global behavior of wireless sensor networks based on cellular automata. Acta Physica Sinica, doi: 10.7498/aps.57.6896
    [11] Liu Lei, Xu Sheng-Hua, Liu Jie, Duan Li, Sun Zhi-Wei, Liu Ren-Xiao, Dong Peng. Crystallization of charged colloidal particles: an experimental study. Acta Physica Sinica, doi: 10.7498/aps.55.6168
    [12] He Ya-Feng, Dong Li-Fang, Liu Fu-Cheng, Fan Wei-Li. Localized hexagonal structure in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.54.4236
    [13] Li Liang-Xin, Hu Yong-Hua. Intersubband and intraband transitions of self-assembled quantum wires for the infrared detectors. Acta Physica Sinica, doi: 10.7498/aps.54.848
    [14] Yao Wen-Jing, Yang Chun, Han Xiu-Jun, Chen Min, Wei Bing-Bo, Guo Zeng-Yuan. Rapid dendritic growth in an undercooled Ni-Cu alloy under the microgravity condition. Acta Physica Sinica, doi: 10.7498/aps.52.448
    [15] HUO CHONG-RU, ZHU ZHEN-HE, GE PEI-WEN, CHEN DONG. THE STABILITY OF THE CRYSTAL GROWTH FACE IN A MODEL FOR CRYSTAL GROWTH FROM SOLUTION UNDER MICROGRAVITY . Acta Physica Sinica, doi: 10.7498/aps.50.377
    [16] HE SHENG-TAI, YAO JIAN-NIAN, WANG YU-PING, JIANG PENG, SHI DONG-XIA, XIE SI-SHEN, PANG SHI-JIN, GAO HONG-JUN. SELF-ASSEMBLED TWO-DIMENSIONAL ORDERED ARRAYOF SILVER NANOPARTICLES. Acta Physica Sinica, doi: 10.7498/aps.50.765
    [17] WANG CHAO-YING, ZHAI GUANG-JIE, WU LAN-SHENG, MAI ZHEN-HONG, LI HONG, ZHANG HAI -FENG, DING BING-ZHE. EFFECT OF GRAVITY ON THE WETTING BEHAVIOR OF MOLTEN GaSb DROP. Acta Physica Sinica, doi: 10.7498/aps.49.2094
    [18] JIANG GUO-JIAN, ZHANG QING-XUE, ZHUANG HAN-RUI, LI WEN-LAN, LI MAO-ZI. STUDIES OF GRAVITY BEHAVIORS IN THE COURSE OF PRODUCING AlN AND TiC MATERIALS(Ⅰ ). Acta Physica Sinica, doi: 10.7498/aps.49.2494
    [19] JIANG GUO-JIAN, ZHANG QING-XUE, ZHUANG HAN-RUI, LI WEN-LAN, LI MAO-ZI. STUDIES OF GRAVITY BEHAVIORS IN THE COURSE OF PRODUCING AlN AND TiC MATERIALS(Ⅲ ). Acta Physica Sinica, doi: 10.7498/aps.49.2502
    [20] JIANG GUO-JIAN, ZHANG QING-XUE, ZHUANG HAN-RUI, LI WEN-LAN, LI MAO-ZI. STUDIES OF GRAVITY BEHAVIORS IN THE COURSE OF PRODUCING AlN AND TiC MATERIALS(Ⅱ ). Acta Physica Sinica, doi: 10.7498/aps.49.2498
Metrics
  • Abstract views:  689
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Available Online:  28 August 2025
  • /

    返回文章
    返回