-
Complex plasmas are composed of ionized gas and mesoscopic particles, representing a typical non-equilibrium complex system. The particles are negatively charged due to the higher thermal velocity of the electrons and interact with each other via Yukawa interactions. As the motions of individual particles can be easily recorded by video microscopy, generic processes in liquids and solids can be studied in complex plasmas at kinetic level. Under microgravity conditions, the particles are confined in the bulk plasma and form a three-dimensional cloud. In the PK-4 Laboratory on board the International Space Station, melamine formaldehyde particles of diameter 6.8 μm and 3.4 μm are injected consecutively in the plasma discharge. Due to the electrostatic force and ion drag force, usually, the particles cannot be mixed in the same region, leading to a phase separation. During the particle injections, small particles penetrate into the cloud of big particles, self-organizing differently under various conditions. When the number density of the big particles is low, small particles form a channel in the center of the discharge tube due to the Yukawa repulsion, where the cloud of the big particles is weakly confined. When the number density of the big particles is mediate, lanes are formed during the penetration of the small particles, representing a typical nonequilibrium self-organization. When the number density of the big particles is high, dust acoustic waves are self-excited due to the two-stream instability. As the small and big particles interact with each other, the particle number density in the wave crests rises drastically. However, the wave numbers and frequencies remain unaltered. This investigation provides insights to the different self-organizations during the particle injections in three-dimensional binary complex plasmas under microgravity conditions.
-
Keywords:
- complex plasma /
- self-organization /
- microgravity
-
[1] Melzer A 2019 Physics of Dusty Plasmas: An Introduction (Heidelberg: Springer Nature Switzerland AG)
[2] Shukla P K 2001 Phys. Plasmas 8 1791
[3] Klumov B A, Morfill G E, Popel S I 2005 J. Exp. Theor. Phys. 100 152
[4] Rosenberg M 1993 Planet. Space Sci. 41 229
[5] Goertz C K 1989 Rev. Geophys. 27 271
[6] Menzel K O, Arp O, Piel A 2010 Phys. Rev. Lett. 104 235002
[7] Heidemann R, Zhdanov S, Sütterlin R, Thomas H M, Morfill G E 2009 Phys. Rev. Lett. 102 135002
[8] Chan C L, Lai Y J, Woon W Y, Chu H Y, I Lin 2004 Plasma Phys. Control. Fusion 47 A273
[9] Steinmuller B, Dietz C, Kretschmer M, Thoma M H 2017 Phys. Plasmas 24 033705
[10] Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002
[11] Huang D, Baggioli M, Lu S, Ma Z, Feng Y 2023 Phys. Rev. Research 5 013149
[12] Annaratone B M, Antonova T, Arnas C, Bandyopadhyay, Chaudhuri M, Du C R, Elskens Y, Ivlev A V, Morfill G E, Nosenko V, Sütterlin R K, Schwabe M, Thomas H 2010 Plasma Sources Sci. Technol. 19 065026
[13] Sütterlin K R, Wysocki A, Räth C, Ivlev A V, Thomas H M, Khrapak S, Zhdanov S, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2010 Plasma Phys. Control. Fusion 52 124042
[14] Lipaev A M, Naumkin V N, Khrapak S A, Usachev A D, Petrov O F, Thoma M H, Kretschmer, Du C R, Kononenko O D, Zobnin A V 2025 Phys. Rev. E 111 015209
[15] Dietz C, Budak J, Kamprich T, Kretschmer M, Thoma M H 2021 Contrib. Plasma Phys. 61 e202100079
[16] Ludwig P, Jung H, Kaehlert H, Joost J P, Greiner F, Moldabekov Z, Carstensen J, Sundar S, Bonitz M, Piel A 2018 Eur. Phys. J. D. 72 82
[17] Liu B, Goree J, Pustylnik M Y, Thomas H M, Fortov V E, Lipaev A M, Usachev A D, Petrov O F, Zobnin A V, Thoma M H 2021 IEEE Trans. Plasma Sci. 49 2972
[18] Rothermel H, Hagl T, Morfill G E, Thoma M H, Thomas H M 2002 Phys. Rev. Lett. 89 175001
[19] Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353
[20] Schmitz A S, Hanstein L, Klein M, Kretschmer M, Lotz C, Shemakhin A, Thoma M H 2025 Microgravity Sci. Technol. 37 7
[21] Morfill G E, Thomas H M, Konopka U M, Rothermel H M, Rubin-Zuzic M, Ivlev A V, Goree J1999 Phys. Rev. Lett. 83 1598
[22] Nefedov A P, Morfill G E, Fortov V E, Thomas H M, Rothermel H, Hagl T, Ivlev A V, Zuzic M, Klumov B A, Lipaev A M, Molotkov V I, Petrov O, Gidzenko Y P, Krikalev S, Shepherd W, Ivanov A I, Roth M, Binnenbruck H, Goree J, Semenov Y P et al 2003 New J. Phys. 5 33
[23] Thomas H M, Morfill G E, Fortov V E, Ivlev A V, Molotkov V I, Lipaev A M, Hagl T, Rothermel H, Khrapak S A, Suetterlin R K, Rubin-Zuzic M, Petrov O F, Tokarev V I, Krikalev S K, 2008 New J. Phys. 10 033036
[24] Fortov V, Morfill G, Petrov O, Thoma M, Usachev A, Hoefner H, 2005 Plasma Phys. Control. Fusion 47 B537
[25] Knapek C A, Couedel L, Dove A, Goree J, Konopka U, Melzer A, Ratynskaia S, Thoma M H, Thomas H M 2022 Plasma Phys. Control. Fusion 64 124006
[26] Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 SCIENTIA SINICA Physica, Mechanica & Astronomica 55 105206 (in Chinese) [杨唯,王垚楠,梁颖悦 黄晓江 周鸿颖 郭颖 张菁 冯岩 王晓钢 张立宪 杜诚然 2025 中国科学 物理学 力学 天文学 55 105206]
[27] Block D, Melzer A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 063001
[28] Sütterlin K R, Wysocki A, Ivlev A V, Räth C, Thomas H M, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2009 Phys. Rev. Lett. 102 085003
[29] Khrapak S A, Klumov B A, Huber P, Molotkov V I, Lipaev A M, Naumkin V N, Thomas H M, Ivlev A V, Morifll G E, Petrov O F, Fortov V E, Malentschenko Y, Volkov S. 2011 Phys. Rev. Lett. 106 205001
[30] Schwabe M, Zhdanov S, Räth C, Graves D B, Thomas H M, Morfill G E 2014 Phys. Rev. Lett. 112 115002
[31] Pan S, Yang W, Lipaev A M, Zobnin, A V, Li D H, Chang S, Shkaplerov A, Prokopyev S V, Thoma M, Du C R 2024 EPL 147 44001
[32] Schwabe M, Rubin-Zuzic M, Zhdanov S, Thomas H M, Morfill G E 2007 Phys. Rev. Lett. 99 095002
[33] Bajaj P, Khrapak S, Yaroshenko V, Schwabe M 2022 Phys. Rev. E 105 025202
[34] Schwabe M, Zhdanov S K, Thomas H M, Ivlev A V, Rubin-Zuzic M, Morfill G E, Molotkov V I, Lipaev A M, Fortov V E, Reiter T 2008 New J. Phys. 10 033037
[35] Sun W, Schwabe M, Thomas H M, Lipaev A M, Molotkov V I, Fortov V E, Feng Y, Lin Y F, Zhang J, Guo Y, Du C R 2018 EPL 122 55001
[36] Hong X, Sun W, Schwabe M, Du C R, Duan W S 2021 Phys. Rev. E 104 025206
[37] Schwabe M, Khrapak S A, Zhdanov S K, Pustylnik M Y, Räth C, Fink M, Kretschmer M, Lipaev A M, Molotkov V I, Schmitz A S, Thoma M H, Usachev A D, Zobnin A V, Padalka G I, Fortov V E, Petrov O F, Thomas H M 2020 New J. Phys. 22 083079
[38] Wimmer L, Dormagen N, Klein M, Kretschmer M, Lipaev A M, Schwarz M, Usachev A D, Petrov O F, Zobnin A, Thoma M H 2025 New J. Phys. 27 033001
[39] Yaroshenko V V, Khrapak S A, Pustylnik M Y, Thomas H M, Jaiswal S, Lipaev A M, Usachev A D, Petrov O F, Fortov V E 2019 Phys. Plasmas 26 053702
[40] Khrapak S, Yaroshenko V 2020 Plasma Phys. Control. Fusion 62 105006
[41] Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 EPL 85 45001
[42] Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, G E Morfill 2010 Phys. Rev. Lett. 105 045001
[43] Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002
[44] Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1
[45] Chakrabarti J, Dzubiella J, Löwen H 2004 Phys. Rev. E 70 012401
[46] Du C R, Sütterlin K R, Jiang K, Räth C, Ivlev A V, Khrapak S, Schwabe M, H M Thomas, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Malentschenko Y, Yurtschichin F, Lonchakov Y, Morfill G E 2012 New J. Phys. 14 073058
[47] Jiang K, Du C R, Sütterlin K R, Ivlev A V, Morfill G E 2010 EPL 92 65002
[48] Kretschmer M, Antonova T, Zhdanov S, Thoma M 2016 IEEE Trans. Plasma Sci. 44 458
Metrics
- Abstract views: 689
- PDF Downloads: 5
- Cited By: 0