Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Brillouin Light Scattering Spectroscopy and Its Applications

WANG Yueqi GUO Mengying WANG Qi

Citation:

Brillouin Light Scattering Spectroscopy and Its Applications

WANG Yueqi, GUO Mengying, WANG Qi
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Brillouin Light Scattering (BLS) spectroscopy has emerged as a cornerstone technique for investigating elementary excitations in condensed matter systems, offering unique capabilities for non invasive characterization of magnon and phonon dynamics. This review examines the fundamental principles, technological evolution, and diverse applications of BLS across multiple research domains.
    BLS operates through inelastic scattering between photons and quasiparticles (magnons, phonons), enabling precise measurement of excitation frequencies, propagation characteristics, and interaction mechanisms via detection of characteristic frequency shifts. Since Brillouin’s 1914 theoretical prediction and Gross’s 1930 experimental verification, the technique has evolved dramatically. The revolutionary development of tandem Fabry-Pérot interferometers by Sandercock in the 1970s established the foundation for modern high-resolution BLS systems, achieving contrast ratios exceeding 1010 and frequency resolution in the MHz range.
    We detail four advanced BLS configurations: 1) Conventional wave-vector-resolved systems enabling precise dispersion relation measurements and detection of non-reciprocal spin wave propagation induced by Dzyaloshinskii-Moriya interactions; 2) Micro-focused BLS (μBLS) achieving sub-micrometer spatial resolution for nanoscale magnetic structure characterization; 3) Time-resolved BLS (TR-BLS) providing nanosecond temporal resolution for studying ultrafast dynamics, magnon Bose-Einstein condensation, and nonlinear phenomena; 4) Phase-resolved BLS (PR-BLS) enabling direct wave vector and phase measurements through electro-optical modulation.
    Beyond traditional magnonic applications, BLS demonstrates remarkable versatility in phonon research and magnetoacoustic coupling studies. The technique’s polarization-sensitive detection allows simultaneous investigation of magnon-phonon hybrid states and energy transfer mechanisms. Importantly, BLS has successfully expanded into biomedical applications, providing non-contact characterization of cellular and tissue viscoelastic properties at GHz frequencies, revealing disease-related biomechanical changes.
    As BLS technology continues advancing through improved instrumentation and novel methodologies, it serves as an indispensable platform spanning quantum materials research, magnonic device development, and cellular mechanobiology, positioning itself at the forefront of interdisciplinary science bridging condensed matter physics, materials engineering, and biomedical research.
  • [1]

    Brillouin L 1914 C. R. Hebd. Acad. Sci. 158 1331

    [2]

    Brillouin L 1922 Ann. Phys. 9 88

    [3]

    Mandelstam L I 1926 Zh. Russ. Fiz.-Khim. O-va. 58 146

    [4]

    Gross E 1930 Nature 126 201

    [5]

    Maiman T H 1960 Nature 187 493

    [6]

    Fleury P, Porto S, Cheesman L, Guggenheim H 1966 Phys. Rev. Lett. 17 84

    [7]

    Sandercock J R 1970 Opt. Commun. 2 73

    [8]

    Sandercock J R 1972 Phys. Rev. Lett. 28 237

    [9]

    Lindsay S, Anderson M, Sandercock J R 1981 Rev. Sci. Instrum. 52 1478

    [10]

    Madami M, Gubbiotti G, Tacchi S, Carlotti G 2012 Solid State Phys. 63 79

    [11]

    Sebastian T, Schultheiss K, Obry B, Hillebrands B, Schultheiss H 2015 Front. Phys. 3 35

    [12]

    Schultheiss H, Schäfer S, Candeloro P, Leven B, Hillebrands B, Slavin A N 2008 Phys. Rev. Lett. 100 047204

    [13]

    Büttner O, Bauer M, Rueff A, Demokritov S O, Hillebrands B, Slavin A N, Kostylev M, Kalinikos B 2000 Ultrasonics 38 443

    [14]

    Büttner O, Bauer M, Demokritov S O, Hillebrands B, Kivshar Y S, Grimalsky V, Rapoport Y, Slavin A N 2000 Phys. Rev. B 61 11576

    [15]

    Demokritov S O, Hillebrands B, Slavin A N 2001 Phys. Rep. 348 441

    [16]

    Gusev V E, Ruello P 2018 Appl. Phys. Rev. 5 031101

    [17]

    Bauer M, Büttner O, Demokritov S O, Hillebrands B, Grimalsky V, Rapoport Y, Slavin A N 1998 Phys. Rev. Lett. 81 3769

    [18]

    Nembach H T, Shaw J M, Weiler M, Jué E, Silva T J 2015 Nat. Phys. 11 825

    [19]

    Fohr F, Serga A A, Schneider T, Hamrle J, Hillebrands B 2009 Rev. Sci. Instrum. 80

    [20]

    Yang J, Guo M Y, Li Z L, Wu P, Cai K M, Liu X Z, Peng Y G, Wang Q, Zhu X F 2025 Phys. Rev. Appl. 23 L051001

    [21]

    Scarcelli G, Yun S H 2008 Nat. Photonics 2 39

    [22]

    Cheng G 2008 Raman and Brillouin Scattering (Beijing:Science Press), p 461. (in Chinese)[程光煦 2008 拉曼布里渊散射 (北京: 科学出版社) 第 461 页]

    [23]

    Jacquinot P 1960 Rep. Prog. Phys. 23 267

    [24]

    Hillebrands B 2000 Light Scattering in Solids VⅡ: Crystal-Field and Magnetic Excitations, vol. 75 (Berlin: Springer), p 174

    [25]

    Mock R, Hillebrands B, Sandercock J R 1987 J. Phys. E: Sci. Instrum. 20 656

    [26]

    Sandercock J R 1982 Light Scattering in Solids Ⅲ: Recent Results, vol. 51 (Berlin: Springer), pp 173–206

    [27]

    Wang Q 2019 Ph.D. Dissertation (Kaiserslautern: Technische Universität Kaiserslautern)

    [28]

    Bozhko D A, Musiienko-Shmarova H Y, Tiberkevich V S, Slavin A N, Syvorotka I I, Hillebrands B, Serga A A 2020 Phys. Rev. Res. 2 023324

    [29]

    Serga A A, Sandweg C, Vasyuchka V, Jungfleisch M, Hillebrands B, Kreisel A, Kopietz P, Kostylev M 2012 Phys. Rev. B 86 134403

    [30]

    Böttcher T, Lee K, Heussner F, Jaiswal S, Jakob G, Kläui M, Hillebrands B, Brächer T, Pirro P 2020 ArXiv:2006.02690v1[cond-mat.mtrl-sci]

    [31]

    Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201

    [32]

    Cho J, Kim N H, Lee S, Kim J S, Lavrijsen R, Solignac A, Yin Y, Han D S, van Hoof N J J, Swagten H J M, Koopmans B, You C Y 2015 Nat. Commun. 6 7635

    [33]

    Song W, Wang X, Wang W, Jiang C, Wang X, Chai G 2020 Phys. Status Solidi RRL 14 2000118

    [34]

    Damon R W, Eshbach J R 1961 J. Phys. Chem. Solids 19 308

    [35]

    Sandercock J R, Wettling W 1979 J. Appl. Phys. 50 7784

    [36]

    Grünberg P, Cottam M, Vach W, Mayr C, Camley R 1982 J. Appl. Phys. 53 2078

    [37]

    Wang Q, Csaba G, Verba R, Chumak A V, Pirro P 2024 Phys. Rev. Appl. 21 040503

    [38]

    Chumak A V, Kabos P, Wu M, Abert C, Adelmann C, Adeyeye A O, Akerman J, Aliev F G, Anane A, Awad A, Back C H, Barman A, Bauer G E W, Becherer M, Beginin E N, Bittencourt V A S V, Blanter Y M, Bortolotti P, Boventer I, Bozhko D A, Bunyaev S A, Carmiggelt J J, Cheenikundil R R, Ciubotaru F, Cotofana S, Csaba G, Dobrovolskiy O V, Dubs C, Elyasi M, Fripp K G, Fulara H, Golovchanskiy I A, Gonzalez-Ballestero C, Graczyk P, Grundler D, Gruszecki P, Gubbiotti G, Guslienko K, Haldar A, Hamdioui S, Hertel R, Hillebrands B, Hioki T, Houshang A, Hu C M, Huebl H, Huth M, Iacocca E, Jungfleisch M B, Kakazei G N, Khitun A, Khymyn R, Kikkawa T, Klaui M, Klein O, Klos J W, Knauer S, Koraltan S, Kostylev M, Krawczyk M, Krivorotov I N, Kruglyak V V, Lachance-Quirion D, Ladak S, Lebrun R, Li Y, Lindner M, Macedo R, Mayr S, Melkov G A, Mieszczak S, Nakamura Y, Nembach H T, Nikitin A A, Nikitov S A, Novosad V, Otalora J A, Otani Y, Papp A, Pigeau B, Pirro P, Porod W, Porrati F, Qin H, Rana B, Reimann T, Riente F, RomeroIsart O, Ross A, Sadovnikov A V, Safin A R, Saitoh E, Schmidt G, Schultheiss H, Schultheiss K, Serga A A, Sharma S, Shaw J M, Suess D, Surzhenko O, Szulc K, Taniguchi T, Urbanek M, Usami K, Ustinov A B, van der Sar T, van Dijken S, Vasyuchka V I, Verba R, Kusminskiy S V, Wang Q, Weides M, Weiler M, Wintz S, Wolski S P, Zhang X 2022 IEEE Trans. Magn. 58 1

    [39]

    Jersch J, Demidov V E, Fuchs H, Rott K, Krzysteczko P, Münchenberger J, Reiss G, Demokritov S O 2010 Appl. Phys. Lett. 97 152502

    [40]

    Yoshihara A 2023 Materials 16 1038

    [41]

    Heinz B, Braecher T, Schneider M, Wang Q, Laegel B, Friedel A M, Breitbach D, Steinert S, Meyer T, Kewenig M, Dubs C, Pirro P, Chumak A V 2020 Nano Lett. 20 4220

    [42]

    Pirro P, Brächer T, Vogt K, Obry B, Schultheiss H, Leven B, Hillebrands B 2011 Phys. Status Solidi B 248 2404

    [43]

    Vogt K, Fradin F Y, Pearson J E, Sebastian T, Bader S D, Hillebrands B, Hoffmann A, Schultheiss H 2014 Nat. Commun. 5 3727

    [44]

    Wang Q, Kewenig M, Schneider M, Verba R, Kohl F, Heinz B, Geilen M, Mohseni M, Lägel B, Ciubotaru F, Adelmann C, Dubs C, Cotofana O V Sorin Dan an Dobrovolskiy, Braecher T, Pirro P, Chumak A V 2020 Nat. Electron. 3 765

    [45]

    Schneider M, Braecher T, Breitbach D, Lauer V, Pirro P, Bozhko D A, Musiienko-Shmarova H Y, Heinz B, Wang Q, Meyer T, Heussner F, Keller S, Papaioannou E T, Laegel B, Loeber T, Dubs C, Slavin A N, Tiberkevich V S, Serga A A, Hillebrands B, Chumak A V 2020 Nat. Nanotechnol. 15 457

    [46]

    Frey P, Bozhko D A, L’vov V S, Hillebrands B, Serga A A 2021 Phys. Rev. B 104 014420

    [47]

    Wang Q, Verba R, Davídková K, Heinz B, Tian S, Rao Y, Guo M, Guo X, Dubs C, Pirro P, Chumak A V 2024 Nat. Commun. 15 7577

    [48]

    Serga A A, Demokritov S O, Hillebrands B, Slavin A N 2004 Phys. Rev. Lett. 92 117203

    [49]

    Wang Y, Guo M, Davídková K, Verba R, Guo X, Dubs C, Chumak A V, Pirro P, Wang Q 2025 Phys. Rev. Appl. 23 014066

    [50]

    Wang Q, Verba R, Heinz B, Schneider M, Wojewoda O, Davídková K, Levchenko K, Dubs C, Mauser N J, Urbánek M, Pirro P, Chumak A V 2023 Sci. Adv. 9 eadg4609

    [51]

    Merbouche H, Divinskiy B, Gouéré D, Lebrun R, El Kanj A, Cros V, Bortolotti P, Anane A, Demokritov S O, Demidov V E 2024 Nat. Commun. 15 1560

    [52]

    Mathieu C, Synogatch V T, Patton C E 2003 Phys. Rev. B 67 104402

    [53]

    Schultheiss H, Vogt K, Hillebrands B 2012 Phys. Rev. B 86 054414

    [54]

    Körber L, Schultheiss K, Hula T, Verba R, Faßbender J, Kákay A, Schultheiss H 2020 Phys. Rev. Lett. 125 207203

    [55]

    Merbouche H, Divinskiy B, Nikolaev K O, Kaspar C, Pernice W H P, Gouéré D, Lebrun R, Cros V, Ben Youssef J, Bortolotti P, Anane A, Demokritov S O, Demidov V E 2022 Sci. Rep. 12 7246

    [56]

    Wojewoda O 2020 M.S. Dissertation (Brno: Brno University of Technology)

    [57]

    Wojewoda O 2024 Ph.D. Dissertation (Brno: Brno University of Technology)

    [58]

    Serga A A, Schneider T, Hillebrands B, Demokritov S O, Kostylev M P 2006 Appl. Phys. Lett. 89 063506

    [59]

    Vogt K, Schultheiss H, Hermsdoerfer S, Pirro P, Serga A A, Hillebrands B 2009 Appl. Phys. Lett. 95 182505

    [60]

    Schneider T, Serga A A, Neumann T, Hillebrands B, Kostylev M 2008 Phys. Rev. B 77 214411

    [61]

    Demidov V E, Urazhdin S, Demokritov S O 2009 Appl. Phys. Lett. 95 262509

    [62]

    Bozhko D A, Vasyuchka V I, Chumak A V, Serga A A 2020 Low Temp. Phys. 46 383

    [63]

    Bottani C E, Fioretto D 2018 Adv. Phys. X 3 1467281

    [64]

    Palombo F, Fioretto D 2019 Chem. Rev. 119 7833

    [65]

    Antonacci G, Beck T, Bilenca A, Czarske J, Elsayad K, Guck J, Kim K, Krug B, Palombo F, Prevedel R, Scarcelli G 2020 Biophys. Rev. 12 615

    [66]

    Landau L, Lifshitz E, Sykes J, Reid W, Dill E H 1960 Phys. Today 13 44

    [67]

    Prevedel R, Diz-Muñoz A, Ruocco G, Antonacci G 2019 Nat. Methods 16 969

    [68]

    Koski K J, Akhenblit P, McKiernan K, Yarger J L 2013 Nat. Mater. 12 262

    [69]

    Dutcher J R 1989 Ph.D. Dissertation (Burnaby: Simon Fraser University)

    [70]

    Geilen M, Nicoloiu A, Narducci D, Mohseni M, Bechberger M, Ender M, Ciubotaru F, Hillebrands B, Müller A, Adelmann C, Pirro P 2022 Appl. Phys. Lett. 120 242404

    [71]

    An K, Olsson K S, Weathers A, Sullivan S, Chen X, Li X, Marshall L G, Ma X, Klimovich N, Zhou J, Shi L, Li X 2016 Phys. Rev. Lett. 117 107202

    [72]

    Kunz Y, Küß M, Schneider M, Geilen M, Pirro P, Albrecht M, Weiler M 2024 Appl. Phys. Lett. 124 152403

    [73]

    Serga A A, Tiberkevich V S, Sandweg C W, Vasyuchka V I, Bozhko D A, Chumak A V, Neumann T, Obry B, Melkov G A, Slavin A N, Hillebrands B 2014 Nat. Commun. 5 3452

    [74]

    Bozhko D A, Clausen P, Chumak A V, Kobljanskyj Y V, Hillebrands B, Serga A A 2015 Low Temp. Phys. 41 801

    [75]

    Scarcelli G, Polacheck W J, Nia H T, Patel K, Grodzinsky A J, Kamm R D, Yun S H 2015 Nat. Methods 12 1132

    [76]

    Antonacci G, Braakman S 2016 Sci. Rep. 6 37217

    [77]

    Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C, Roscini L, Corte L, Cardinali G, Palombo F, Sandercock J R, Fioretto D 2017 Phys. Rev. X 7 031015

    [78]

    Mattana S, Mattarelli M, Urbanelli L, Sagini K, Emiliani C, Serra M D, Fioretto D, Caponi S 2018 Light Sci. Appl. 7 17139

    [79]

    Vaughan J, Randall J 1980 Nature 284 489

    [80]

    Scarcelli G, Yun S H 2012 Opt. Express 20 9197

    [81]

    Akilbekova D, Ogay V, Yakupov T, Sarsenova M, Umbayev B, Nurakhmetov A, Tazhin K, Yakovlev V V, Utegulov Z N 2018 J. Biomed. Opt. 23 097004

    [82]

    Cardinali M A, Di Michele A, Mattarelli M, Caponi S, Govoni M, Dallari D, Brogini S, Masia F, Borri P, Langbein W, Palombo F, Morresi A, Fioretto D 2022 J. R. Soc. Interface 19 20210642

    [83]

    Palombo F, Masia F, Mattana S, Tamagnini F, Borri P, Langbein W, Fioretto D 2018 Analyst 143 6095

    [84]

    Conrad C, Gray K M, Stroka K M, Rizvi I, Scarcelli G 2019 Cell. Mol. Bioeng. 12 215

    [85]

    Zhang J, Fiore A, Yun S H, Kim H, Scarcelli G 2016 Sci. Rep. 6 35398

  • [1] Liu Xiang, Wang Xi-Guang, Li Zhi-Xiong, Guo Guang-Hua. Left-handed polarized spin waves induced by spin polarized electric currents in ferromagnetic domain walls. Acta Physica Sinica, doi: 10.7498/aps.73.20240651
    [2] Li Qi-Zhi, Zhang Shi-Long, Peng Ying-Ying. Resonant inelastic X-ray scattering study of charge density waves and elementary excitations in cuprate superconductors. Acta Physica Sinica, doi: 10.7498/aps.73.20240983
    [3] Huang Ming-Xian, Hu Wen-Bin, Bai Fei-Ming. Surface acoustic wave-spin wave coupling and magneto-acoustic nonreciprocal devices. Acta Physica Sinica, doi: 10.7498/aps.73.20240462
    [4] Yan Jian, Ren Zhi-Wei, Zhong Zhi-Yong. Spin waves in Y3Fe5O12-CoFeB spin-wave directional coupler. Acta Physica Sinica, doi: 10.7498/aps.70.20210507
    [5] Wang Zi, Zhang Dan-Mei, Ren Jie. Topological and non-reciprocal phenomena in elastic waves and heat transport of phononic systems. Acta Physica Sinica, doi: 10.7498/aps.68.20191463
    [6] Lv Gang, Zhang Hong, Hou Zhi-Wei. Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer. Acta Physica Sinica, doi: 10.7498/aps.67.20180947
    [7] Huang Shi-Hao, Xie Wen-Ming, Wang Han-Cong, Lin Guang-Yang, Wang Jia-Qi, Huang Wei, Li Cheng. Lattice scattering in n-type Ge-on-Si based on the unique dual-valley transitions. Acta Physica Sinica, doi: 10.7498/aps.67.20171413
    [8] Lü Gang, Cao Xue-Cheng, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei, Zhang Hong. Azimuthal spin wave modes in an elliptical nanomagnet with single vortex configuration. Acta Physica Sinica, doi: 10.7498/aps.64.217501
    [9] Zhou Qing-Chun, Di Zun-Yan. Phonon effect on the quantum phase of a radiation field interacting with a tunneling-coupled quantum-dot molecule. Acta Physica Sinica, doi: 10.7498/aps.62.134206
    [10] Hou Xiao-Juan, Yun Guo-Hong, Bai Yu-Hao, Bai Narsu, Zhou Wen-Ping. The eigenvalues of quantized spin waves and theeffect of the uniaxial anisotropy. Acta Physica Sinica, doi: 10.7498/aps.60.056805
    [11] Deng Yan-Ping, Lü Bin-Bin, Tian Qiang. Excitons and effects of phonons on excitons in asymmetric square quantum well. Acta Physica Sinica, doi: 10.7498/aps.59.4961
    [12] Gao Dang-Li, Zhang Xiang-Yu, Zhang Zheng-Long, Xu Liang-Min, Lei Yu, Zheng Hai-Rong. Improvement on the up-conversion fluorescence emission in Tm3+ doped optical materials by adjusting phonon distribution. Acta Physica Sinica, doi: 10.7498/aps.58.6108
    [13] Ding Ling-Yun, Gong Zhong-Liang, Huang Ping. Energy dissipation mechanism of phononic friction. Acta Physica Sinica, doi: 10.7498/aps.58.8522
    [14] He Meng-Dong, Gong Zhi-Qiang. Acoustic-phonon transmission in multilayer heterojunctions. Acta Physica Sinica, doi: 10.7498/aps.56.1415
    [15] Zhao Xing-Dong, Xie Zheng-Wei, Zhang Wei-Ping. Nonlinear spin waves in a Bose condensed atomic chain. Acta Physica Sinica, doi: 10.7498/aps.56.6358
    [16] Yao Ming, Zhu Ka-Di, Yuan Xiao-Zhong, Jiang Yi-Wen, Wu Zhuo-Jie. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems. Acta Physica Sinica, doi: 10.7498/aps.55.1769
    [17] Xia Zhi-Lin, Fan Zheng-Xiu, Shao Jian-Da. Electrons-phonons collision velocity in films radiated by laser. Acta Physica Sinica, doi: 10.7498/aps.55.3007
    [18] Cheng Ze. Unified quantum field theory of Raman scattering of light in piezoelectric crystals. Acta Physica Sinica, doi: 10.7498/aps.54.5435
    [19] Wu Yan-Zhao, Yu Ping, Wang Yu-Fang, Jin Qing-Hua, Ding Da-Tong, Lan Guo-Xiang. Baman scattering intensity of single-wall carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.54.5262
    [20] Xu Quan, Tian Qiang. The interaction of excitons with phonons and solution of breathers in one-dimensional molecular chain. Acta Physica Sinica, doi: 10.7498/aps.53.2811
Metrics
  • Abstract views:  52
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  30 September 2025
  • /

    返回文章
    返回