-
The lattice Boltzmann method (LBM) was used to simulate natural convection of nanofluids in a square enclosure under the influence of a magnetic field. The research systematically investigates the effects of key parameters, magnetic field strength, tilt angle, nanoparticle size, nanoparticle volume fraction, and Rayleigh number on both heat transfer and fluid flow behaviors. A parametric study was conducted over a wide range of Hartmann numbers (10-6 ≤ Haf,L ≤ 104), magnetic field inclination angles (0 ≤ γB ≤ π), nanoparticle sizes (10-6 ≤ Knf ≤ 104), nanoparticle volume fractions (10-2 ≤ φs ≤ 10-1), and Rayleigh numbers (103 ≤ Raf,L ≤ 106). The results show that when the particle size is Knf = 10-1, the heat transfer efficiency reaches its maximum value regardless of whether heat conduction or convection dominates, indicating the existence of an optimal particle size that balances thermal properties and viscosity. In the low Rayleigh number conduction dominated regime, variations in magnetic field strength have little effect on heat transfer. However, in the high Rayleigh number convection dominated regime, stronger magnetic fields enhance the Lorentz force, which suppresses buoyancy driven flow and reduces heat transfer. The study also demonstrates that the magnetic field tilt angle significantly affects the interaction between the buoyancy force and the Lorentz force. At a tilt angle of π/2, where these forces align, the fluid flow and heat transfer efficiency reach their maximum. Furthermore, the Rayleigh number is identified as a dominant factor in heat transfer, with increasing Rayleigh numbers significantly improving convective heat transfer. The influence of nanoparticle volume fraction on thermal conductivity is less pronounced, yielding only marginal improvements. Finally, the study develops an empirical correlation for the mean Nusselt number as a function of key dimensionless parameters, quantitatively revealing the impact of various factors on heat transfer performance in nanofluids.
-
Keywords:
- Magnetic field /
- nanoparticle size /
- nanofluids /
- natural convection /
- lattice Boltzmann method
-
[1] Adil A, Farrukh A, Hassan F, Jamil F, Khiadani M, Saeed S, Farukh F, Ali H M 2024 J. Therm. Anal. Calorim. 149 9001
[2] Mehrez Z, Maaoui W, Najjari M 2024 Energy Convers. Manage. 307 118353
[3] Kim J, Wang J, Kim H, Bae S 2021 Sci. Rep. 11 733
[4] Sui P 2025 Chin. J. Eng. 47 2012(in Chinese)[隋鹏翔2025工程科学学报47 2012]
[5] Sarojini K G K, Manoja S V, Singha P K, Pradeepb T, Das S K 2013 Colloids Surf. A Phys. Eng. Asp. 417 39
[6] Konakanchi H, Vajjha R, Misra D, Das D 2011 J. Nanosci. Nanotechnol. 11 6788
[7] Zawrah M F, Khattab R M, Girgis L G, Daidamony H, Abdel A R E 2016 HBRC J. 12 227
[8] Ganguly S, Sikdar S, Basu S 2009 Power Technol. 196 326
[9] Minea A A 2013 Curr. Nanosci. 9 81
[10] Zakaria I, Mohamed W A N W, Azmi W H, Mamat A M I, Mamat R, Daud W R W 2018 Int. J. Heat Mass Transfer 119 460
[11] Maxwell J C 1982 A Treatise of Electricity and Magnetism (Vol. 2)(London:Oxford University Press) pp173-215
[12] Bruggeman D A G 1935 Annalen der physik 416 636
[13] Selim M M, El-Safty S, Tounsi A, Shenashen M 2023 Alex. Eng. J. 76 75
[14] Marin C N, Fannin P C, Malaescu I 2024 Magnetochemistry 10 88
[15] Sui P 2024 Acta Phys. Sin. 73 234702(in Chinese)[隋鹏翔2024物理学报73 234702]
[16] Zhang B, Zheng L 2020 Acta Phys. Sin. 69 164401(in Chinese)[张贝豪,郑林2020物理学报69 164401]
[17] Asha N E J, Nag P, Akhter M N, Molla M M 2023 Int. J. of Thermofluids 18 100345
[18] Molla M M, Hossain A, Islam M M 2024 Int. J. of Thermofluids 24 100865
[19] Ebrahimi N, Ashtiani H A D A, Toghraie D 2023 Eng. Anal. Bound. Elem. 152 194
[20] Hwang K S, Lee J H, Jang S P 2009 Int. J. Heat Mass Transfer 50 4003
[21] Sheikholeslami M, Rokni H B 217 Int. J. Heat Mass Transfer 115 1203
[22] Sui P, Su Y, Sun L 2024 ASME J. Heat Mass Transfer 146 011401
[23] Sui P, Su Y, Sin V, Davidson J H 2022 Int. J. Heat Mass Transfer 187 122541
[24] Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transfer 92 995
[25] Nguyen C T, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Minsta H A 2008 Int. J. Therm. Sci. 47 103
[26] Garnett J C M 1904 Trans. Royal. Soc. 203 385
[27] Brinkman H C 1952 J. Chem. Phys. 20 571
[28] Batchelor G 1977 J. Fluid Mech. 83 97
[29] Patel H E, Sundararajan T, Das S K 2010 J. Nanoparticle Res. 12 1015
[30] Nguyen C T, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Mintsa H A 2007 Int. J. Heat Fluid Flow 28 1492
[31] Tarokh A, Mohamad A, Jiang L 2013 Numer. Heat Transfer, Part A 63 159
[32] Ghasemi B, Aminossadati S M, Raisi A 2011 Int. J. Therm. Sci. 50 1748
[33] Teamah M A, El-Maghlany W M 2012 Int. J. Therm. Sci. 58 130
[34] Kumar P, Poonia H, Ali L, Areekara S 2022 Case Stud. Therm. Eng. 37 102247
[35] Zhang X, Zhang Y 2021 Int. J. Therm. Sci. 164 106897
[36] Kargarsharifabad H 2020 Int. Commun. Heat Mass Transfer 119 104957
[37] Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506
Metrics
- Abstract views: 25
- PDF Downloads: 0
- Cited By: 0









下载: