Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of experimental data in nuclear astrophysics: Status and challenges

NAN Weike LIU Weiping CHEN Jie

Citation:

Evaluation of experimental data in nuclear astrophysics: Status and challenges

NAN Weike, LIU Weiping, CHEN Jie
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nuclear reaction rate databases serve as essential inputs for nucleosynthesis and stellar evolution modeling, directly influencing the accuracy and physical reliability of calculations in various nuclear astrophysics processes. This work provides a comprehensive review of the major reaction rate databases—REACLIB, STARLIB, and BRUSLIB—highlighting their objectives, data structures, and representative applications, and discussing their coverage, fitting methods, and uncertainty evaluation. These databases have been instrumental in advancing the standardization of nuclear reaction network calculations. However, although these databases have significantly lowered the barrier to performing network modeling, there remains substantial room for improvement in aspects such as database unit structures, update mechanisms, and organizational frameworks. For example, detailed information on the underlying nuclear physics experiments or data analyses is often not included in REACLIB. Therefore, enhancing the stored metadata warrants careful consideration, since it can significantly improve the reliability of astrophysical modeling. At the same time, the advancement of nuclear astrophysics reaction rate databases depends heavily on continuous progress at the experimental frontier. In recent years, innovative experimental techniques—such as novel 4π high-resolution detector arrays and γ–charged particle coincidence measurements—have been widely applied to studies of key nuclear astrophysics reactions, significantly expanding research capabilities. To meet the demands of cutting-edge astrophysical studies for accurate reaction rates, the real-time updating and systematic evaluation of experimental data for key reactions represent both an important opportunity and an urgent challenge for the development of modern databases. several important achievements of the JUNA Collaboration at the Jinping underground nuclear astrophysics facility, where low-background experiments have been conducted, are also presented in this paper. These new low-energy measurements, when compared with traditional extrapolations used in databases, are found to provide more direct constraints on key reactions in nuclear astrophysics and to offer crucial experimental support for the continuous optimization of future databases.
  • 图 1  核天体物理与其他主要物理学领域之间可能联系的示意图展示

    Figure 1.  Diagrammatic presentation of possible connections of nuclear astrophysics with other major fields of physics.

    图 2  $ ^{60}_{25} {\rm{Mn}}$衰变至$ ^{60}_{26} {\rm{Fe}}$的部分能级示意图以及$ E_x {\text{-}} E_{\gamma} $矩阵[52]

    Figure 2.  $ E_x {\text{-}} E_{\gamma} $ matrix and partial level scheme for $ ^{60} {\rm{Fe}}$ populated following the β decay of $ ^{60} {\rm{Mn}}$[52].

    图 3  现有的14C(n, γ)15C核反应率数据与间接测量新结果的比较[54]

    Figure 3.  Ratio of previous 14C(n, γ)15C reaction rates to the new indirect measurement results[54].

    图 4  12C+12C熔合反应天体物理$ S^* $因子. TTIK实验[61]、数据库编评数据[22]、特洛伊木马方法(THM)实验数据[63], 反对称分子动力学模型计算结果分别用红色实线, 深蓝色点划线, 黑色虚线, 淡蓝色点划线表示

    Figure 4.  Astrophysical S-factor of the $ ^{12}\mathrm{C}+{}^{12}\mathrm{C} $ fusion reaction. The results from TTIK experiments[61], evaluated database data[22], Trojan Horse Method (THM) experimental data[63], and antisymmetrized molecular dynamics (AMD) calculations are represented by the red solid line, dark blue dash-dotted line, black dashed line, and light blue dash-dotted line, respectively.

    图 5  JUNA合作组在天体物理感兴趣能区对关键核反应的直接测量结果[79,81]

    Figure 5.  The JUNA collaboration's direct measurement results of key nuclear reactions in the astrophysically relevant energy region[79,81].

    表 1  三种主要核反应率数据库的表达方式与特点

    Table 1.  XXXXXXXXXXX

    数据库 数据格式 数据库特点
    REACLIB 七参数解析表达式 解析形式统一, 适用于大规模恒星演化与核合成网络(如XNet[33]
    MESA[34]、Kepler[35]); 通常不直接提供反应率不确定度信息.
    BRUSLIB 表格化(温度vs核反应率) 包含基于实验的汇编(如NACRE/NACREII)与大规模Hauser-Feshbach(HF)预测
    两部分; 在质量数>40, 且位于接近稳定核素带区域的复合核研究中更为可靠[15].
    STARLIB 表格化(温度vs核反应率
    vs反应不确定度)
    提供特定温度下每个反应率的概率密度函数, 严格定义反应率
    不确定度[29], 便于开展核反应的蒙特卡洛全局敏感度分析[16].
    DownLoad: CSV

    表 2  近5年以来LUNA关键核反应研究及其对应天体场景

    Table 2.  XXXXXXXXXXXXXX

    核反应 天体场景 参考文献
    2H(p, γ)3He BBN [71]
    6Li(p, γ)7Be 原恒星, 宇宙射线和BBN [72]
    12, 13C(p, γ)13, 14N CNO循环起始反应 [73]
    17O(p, γ)18F CNO循环 [74]
    22Ne(α, γ)26Mg,
    13C(α, n)16O
    s-过程 [75,76]
    DownLoad: CSV

    表 3  近年来若干核天体物理关键核反应实验测量及数据库收录

    Table 3.  XXXXXXXXX

    核反应 实验技术 核反应率数据库收录 参考文献
    25Mg(p, γ)26Al 地下实验直接测量 REACLIB未更新 [79]
    13C(α, n)16O 地下实验直接测量 REACLIB未更新 [76,80]
    19F(p, γ)20Ne 地下实验直接测量 REACLIB未更新 [81]
    19F(p, α)16O 地下实验直接测量 REACLIB未更新 [82]
    18O(α, γ)22Ne 地下实验直接测量 REACLIB未更新 [77,83]
    2H(p, γ)3He 地下实验直接测量 REACLIB未更新 [71]
    12, 13C(p, γ)13, 14N 地下实验直接测量 REACLIB未更新 [73]
    59Fe(n, γ)60Fe β-Oslo方法 REACLIB未更新 [52]
    22Mg(α, p)25Al MUSIC, AT-TPC REACLIB未更新 [56,85]
    14C(n, γ)15C 超导螺线管 REACLIB未更新 [59]
    12C+12C THM, TTIK REACLIB未更新 [61,63]
    12C(α, γ)16O ANC REACLIB未更新 [86,87]
    22Ne(α, n)25Mg, 22Ne(α, γ)26Mg 转移反应, 直接测量 REACLIB未更新 [88]
    39K(p, γ)40Ca 转移反应 STARLIB, REACLIB [89]
    18Ne(α, p)21Na 镜像核, 转移反应 STARLIB [90]
    9Be(n, γ)10Be 活化法+AMS REACLIB [91]
    30Si(p, γ)31P 直接测量 REACLIB [92]
    DownLoad: CSV
  • [1]

    Pagel B 1980 Nature 286 744Google Scholar

    [2]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar

    [3]

    Angulo C, Arnould M, Rayet M, Descouvemount P, Baye D, Willain C L, Coc A, Barhoumi S, Aguer P, Rolfs C, Kunz R, Hammer J W, Mayer A, Paradellis T, Kossionides S, Chronidou C, Spyrou K, Innocenti S D, Fiorentini G, Ricci B, Zavatarelli S, Providencia C, Wolters H, Soares J, Grama C, Rahighi J, Shotter A, Rachti M L 1999 Nucl. Phys. A 656 3Google Scholar

    [4]

    Werrison A W, Wiblin E R 1951 Nature 167 346Google Scholar

    [5]

    Fowler W A 1969 Eng. Sci. 32 8

    [6]

    Cease R P 2001 Hist. Stud. Phys. Biol. Sci. 32 41Google Scholar

    [7]

    Catherall R, Andreazza W, Breitenfeldt M, Dorsival A, Focker G J, Gharsa T P, Giles T J, Grenard J L, Locci F, Martins P, Marzari S, Schipper J, Shornikov A, Stora T 2017 J. Phys. G: Nucl. Part. Phys. 44 094002Google Scholar

    [8]

    Burkard K H, Dumanski W, Kirchner R, Klepper O, Roeckl E 1976 Nucl. Instrum. Methods 139 275Google Scholar

    [9]

    Macklin R L, Gibbons J H, Inada T 1963 Phys. Rev. 129 2695Google Scholar

    [10]

    Macklin R L, Gibbons J H, Inada T 1963 Nature 197 369

    [11]

    Lovell A C B, Wilson A, Wiblin D V M 1951 Nature 167 476

    [12]

    Zerkin V V, Pritychenko B 2018 Nucl. Instrum. Methods Phys. Res. A 888 31

    [13]

    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin A I, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva S, Forrest R A, Fukahori T, Furutachi N, Ganesan S, Ge Z, Gritzay O O, Herman M, Hlavac S, Kato K, Lalremruata B, Zhuang Y 2014 Nucl. Data Sheets 120 272

    [14]

    Cyburt R H, Amthor A M, Ferguson R, Meisel Z, Smith K, Warren S, Heger A, Hoffman R D, Rauscher T, Sakharuk A, Schatz H, Thielemann F K, Wiescher M 2010 Astrophys. J. Suppl. Ser. 189 240

    [15]

    Aikawa M, Arnould M, Goriely S, Jorissen A, Takahashi K 2005 A & A 441 1195

    [16]

    Sallaska A L, Iliadis C, Champange A E, Goriely S, Starrfield S, Timmes F X 2013 Astrophys. J. Suppl. Ser. 207 18

    [17]

    Fowler W A, Caughlan G E, Zimmerman B A 1967 Ann. Rev. Astr. Astro. 5 525

    [18]

    Xu Y, Goriely S, Jorissen A, Chen G L, Arnould M 2013 A & A 549 106

    [19]

    Fowler W A, Caughlan G R, Zimmerman B A 1975 Ann. Rev. Astr. Astro. 13 69

    [20]

    Harris M J, Fowler W A, Caughlan G R, Zimmerman B A 1983 Ann. Rev. Astr. Astro. 21 165

    [21]

    Caughlan G R, Fowler W A, Harris M J, Zimmerman B A 1985 At. Data Nucl. Data Tables 32 197

    [22]

    Caughlan G R, Fowler W A, 1988 At. Data Nucl. Data Tables 40 283

    [23]

    Rauscher T, Thielemann F -K 2000 At. Data Nucl. Data Tables 75 1

    [24]

    Xu Y, Takahashi K, Goriely S, Arnould M, Ohta M, Utsunomiya H 2013 Nucl. Phys. A 918 61

    [25]

    Iliadis C, D'Auria J M, Starrfield S, Thompson W J, Wiescher M 2001 Astrophys. J. 134 151Google Scholar

    [26]

    Bao Z Y, Beer H, Käppeler F, VOSS F, WISSHAK K 2000 At. Data Nucl. Data Tables 76 70Google Scholar

    [27]

    Koning A J, Delaroche J-P 2003 Nucl. Phys. A 713 231Google Scholar

    [28]

    Demetriou P, Grama C, Goriely S 2002 Nucl. Phys. A 707 253Google Scholar

    [29]

    Longland R, Iliadis C, Champange A E, Newton J R, Ugalde C, Coc A, Fitzgerald R 2010 Nucl. Phys. A 841 1

    [30]

    Iliadis C, Longland R, Champange A E, Coc A, Fitzgerald R 2010 Nucl. Phys. A 841 31Google Scholar

    [31]

    Iliadis C, Longland R, Champange A E, Coc A 2010 Nucl. Phys. A 841 323Google Scholar

    [32]

    Iliadis C, Longland R, Champange A E, Coc A 2010 Nucl. Phys. A 841 251Google Scholar

    [33]

    Hix W R, Thielmann F K 1999 Astrophys. J. 511 862Google Scholar

    [34]

    Paxton B, Smolec R, Schwab J 2019 Astrophys. J. Suppl. Ser. 243 10Google Scholar

    [35]

    Woosley S E, Heger A 2007 Phys. Rep. 442 269Google Scholar

    [36]

    Wagoner R V 1969 Astrophys. J. Suppl. Ser. 162 247

    [37]

    Woosley S E, Fowler W A, Holmes J A, Zimmerman B A 1978 At. Data Nucl. Data Tables 22 371Google Scholar

    [38]

    Dillmann I, Heil M, Käppeler F, Plag R, Rauscher T, Thielemann F-K 2006 Proceedings of the International Conference on Capture Gamma-Ray Spectroscopy and Related Topics Notre Dame, IN, USA, September 4–9, 2005 p123

    [39]

    Bao Z Y, Käppeler F 1987 At. Data Nucl. Data Tables 36 411Google Scholar

    [40]

    Beer H, Voss F, Winters R R 1992 Astrophys. J. Suppl. Ser. 80 403Google Scholar

    [41]

    Vescovi D, Reifarth R, Lorenz E, Elbe A 2023 EPJ Web Conf. 279 11011Google Scholar

    [42]

    Dillmann I, Plag R, Käppeler F, Rauscher T 2010 Proceedings of the Scientific Workshop on Neutron Measurements, Theory and Applications-Nuclear Data for Sustainable Nuclear Energy Geel, Belgium, April 28–30, 2009 p55

    [43]

    Reifarth R, Erbacher P, Fiebiger S, Göbel K, Heftrich T, Heil M, Käppeler F, Klapper N, Kurtulgil D, Langer C 2018 Eur. Phys. J. Plus 133 424Google Scholar

    [44]

    Rochman D, Koning A, Goriely S, Hilaire S 2025 Nucl. Phys. A 1053 122951Google Scholar

    [45]

    Rauscher T, Thielemann F K 2000 At. Data Nucl. Data Tables 75 1Google Scholar

    [46]

    Okumura S, Schnabel G, Koning A 2024 EPJ Web Conf. 292 12003Google Scholar

    [47]

    许金艳, 阳黎升, 李奇特, 叶沿林, 韩家兴, 白世伟, 高见 2020 原子能科学技术 54 6

    Xu J Y, Yang L S, Li Q T, Ye Y L, Han J X, Bai S W, Gao J 2020 Atom. Energy Sci. Technol. 54 6

    [48]

    卢奋华, 唐述文, 傅圣威, 闫铎, 马朋, 杨海波, 余玉洪, 章学恒, 王世陶, 张永杰, 方芳, 刘拓琦, 徐颖锋, 李治, 刘相满, 魏啸宝, 孙志宇 2024 原子核物理评论 32 3

    Lu F H, Tang S W, Fu S W, Yan D, Ma P, Yang H B, Yu Y H, Zhang X H, Wang S T, Zhang Y J, Fang F, Liu T Q, Xu Y F, Li Z, Liu X M, Wei X B, Sun Z Y 2024 Nucl. Phys. Rev. 32 3

    [49]

    范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏 2013 物理学报 62 122901

    Fan S N, Wang B, Qi H R, Liu M, Zhang Y L, Zhang J, Liu R G, Yi F T, Ouyang Q, Chen Y B 2013 Acta Phys. Sin. 62 122901

    [50]

    吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞天, 肖君, 马新文, 邹亚明, 魏宝仁 2024 物理学报 73 240701Google Scholar

    Wu Y J, Meng T M, Zhang X W, Tan X, Ma P F, Yin H, Ren B H, Tu B S. Zhang R T, Xiao J, Ma X W, Zou Y M, Wei B R 2024 Acta Phys. Sin. 73 240701Google Scholar

    [51]

    Yang G C, Hua L M, Lu F, Su J, Li Z H, Jin S L, Shen Y P, Guo B 2022 Nucl. Sci. Tech. 33 68

    [52]

    Spyrou A, Richman D, Couture A, Fields C E, Liddick S N, Childers K, Crider B P, DeYoung P A, Dombos A C, Gastis P, Guttormsen M, Hermansen K, Larsen A C, Lewis R, Lyons S, Midtbø J E, Mosby S, Muecher D, Naqvi F, PalmisanoKyle A, Perdikakis G, Prokop C, Schatz H, Smith M K, Sumithrarachchi C, Sweet A 2024 Nat. Commun. 15 9608Google Scholar

    [53]

    Song L Y, Wang L, Su J, Zhang L Y, He J J, Jin S L, Lu F, Shen Y P, Chen J F, Sheng Y D, Chen X, Lin S, Qin Z W, Li Z M, Zhang H, Wang L H, Chen Y J, Jiang X Z, Shen Z L, Li X Y, Liu F C, Huang Y T, Chen S Z, Guo B, Liu W P 2025 Nucl. Sci. Tech. 36 213

    [54]

    Ayyad Y, Olaizola B, Mittig W, Potel G, Zelevinsky V, Horoi M, Beceiro-Novo S, Alcorta M, Andreoiu C, Ahn T, Anholm M, Atar L, Babu A, Bazin D, Bernier N, Bhattacharjee S S, Bowry M, Caballero-Folch R, Cortesi M, Dalitz C, Dunling E, Garnsworthy A B, Holl M, Kootte B, Leach K G, Randhawa J S, Saito Y, Santamaria C, Šiuryt˙e P, Svensson C E, Umashankar R, Watwood N, Yates D 2019 Phys. Rev. Lett. 123 082501Google Scholar

    [55]

    Sieverding A, Randhawa J S, Zetterberg D, deBoer R J, Ahn T, Mancino R, Martínez-Pinedo G, Hix W R 2022 Phys. Rev. C 106 015803

    [56]

    Hu J, Yamaguchi H, Lam Y H, Heger A, Kahl D, Jacobs A M, Johnston Z, Xu S W, Zhang N T, Ma S B, Ru L H, Liu E Q, Liu T, Hayakawa S, Yang L, Shimizu H, Hamill C B, Murphy A St J, Su J, Fang X, Chae K Y, Kwag M S, Cha S M, Duy N N, Uyen N K, Kim D H, Pizzone R G, La Cognata M, Cherubini S, Romano S, Tumino A, Liang J, Psaltis A, Sferrazza M, Kim D H, Li Y Y, Kubono S 2021 Phys. Rev. Lett. 127 172701

    [57]

    Gai M 2022 EPJ Web Conf. 260 01005

    [58]

    Ayyad Y, Bazin D, Bonaiti F, Chen J, Li X, Anthony A, Avila M, Beceiro-Novo S, Bhatt K, Cabo C, Furuno T, Guimarães V, Hall-Smith A, Hunt C, Jayatissa H, Kawabata T, Kumi H, López-González J M, Lois-Fuentes J, Macchiavelli A, McCann G, Müller-Gatermann C, Muñoz-Ramos A, Mittig W, Olaizola B, Rahman Z, Regueira D, Rufino J, Sakajo S, Santamaria C, Serikow M Z, Tang T, Tolstukhin I, Turi N, Watwood N, Zamora J 2025 Front. Phys. 13 1539148Google Scholar

    [59]

    Jiang Y, He Z, Luo Y, Xin W, Chen J, Li X, Shen Y, Guo B, Li G, Pang D, Ma T, Nan W, Kajino T, Liu W 2025 Astrophys. J. 989 231

    [60]

    Nan W K, Wang Y B, Sheng Y D, Su J, Zhang Y Q, Song L Y, Shen Y P, Cao F Q, Chen C, Dong C, Li Y J, Li Z H, Lian G, Nan W, Wang Q, Song N, Yan S Q, Zeng S, Fan Q W, Zhang H, Zhu M H, Guo B, Liu W P 2024 Nucl. Sci. Tech. 35 208

    [61]

    Nan W K, Wang Y B, Su J, Sheng Y D, deBoer R J, Zhang Y Q, Song L Y, Cao F Q, Chen C, Dong C, Li Y J, Li Z H, Lian G, Nan W, Shen Y P, Song N, Yan S Q, Zeng S, Guo B, Liu W P 2025 Phys. Lett. B 862 139341Google Scholar

    [62]

    南威克, 王友宝, 谌阳平, 李云居, 郭冰, 柳卫平 2025 原子核物理评论 42 199

    Nan W K, Wang Y B, Shen Y P, Li Y J, Guo B, Liu W P 2025 Nucl. Phys. Rev. 42 199

    [63]

    Tumino A, Spitaleri C, La Cognata M, Cherubini S, Guardo G L, Gulino M, Hayakawa S, Indelicato I, Lamia L, Petrascu H, Pizzone R G, Puglia S M R, Rapisarda G G, Romano S, Sergi M L, Spartá R, Trache L 2018 Nature 557 687Google Scholar

    [64]

    deBoer R J, Görres J, Wiescher M, Azuma R E, Best A, Brune C R, Fields C E, Jones S, Pignatari M, Sayre D, Smith K, Timmes F X, Uberseder E 2017 Rev. Mod. Phys. 89 035007Google Scholar

    [65]

    Wang Y B, Qin X, Wang B X, Liu W P, Li Z H, Bai X X, Lian G, Guo B, Zeng S, Su J, Li Y J, Jiang C 2009 Chin. Phys. C 33 181Google Scholar

    [66]

    Qin X, Wang Y B, Bai X X, Guo B, Jiang C, Li Y J, Li Z H, Lian G, Su J, Wang B X, Zeng S, Liu W P 2008 Chin. Phys. C 32 957Google Scholar

    [67]

    Broggini C, Bemmerer D, Caciolli A, Trezzi D 2018 Prog. Part. Nucl. Phys. 98 55Google Scholar

    [68]

    Robertson D, Couder M, Greife U, Strieder F, Wiescher M 2016 EPJ Web Conf. 109 09002Google Scholar

    [69]

    Liu W P, Li Z H, He J J, Tang X D, Lian G, An Z, Chang J J, Chen H, Chen Q H, Chen X J, Chen Z J, Cui B Q, Du X C, Fu C B, Gan L, Guo B, He G Z, Heger A, Hou S Q, Huang H X, Huang N, Jia B L, Jiang L Y, Kubono S, Li J M, Li K A, Li T, Li Y J, Lugaro M, Luo X B, Ma H Y, Ma S B, Mei D M, Qian Y Z, Qin J C, Ren J, Shen Y P, Su J, Sun L T, Tan W P, Tanihata I, Wang S, Wang P, Wang Y B, Wu Q, Xu S W, Yan S Q, Yang L T, Yang Y, Yu X Q, Yue Q, Zeng S, Zhang H Y, Zhang H, Zhang L Y, Zhang N T, Zhang Q W, Zhang T, Zhang X P, Zhang X Z, Zhang Z M, Zhao W, Zhao Z, Zhou C 2016 Sci. China Phys. Mech. Astron. 59 642001Google Scholar

    [70]

    Liu W P 2023 Chin. Phys. Lett. 40 060401Google Scholar

    [71]

    Mossa V, Stöckel K, Cavanna F, Ferraro F, Aliotta M, Barile F, Bemmerer D, Best A, Boeltzig A, Broggini C, Bruno C G, Caciolli A, Chillery T, Ciani G F, Corvisiero P, Csedreki L, Davinson T, Depalo R, Di Leva A, Elekes Z, Fiore E M, Formicola A, Fülöp Zs, Gervino G, Guglielmetti A, Gustavino C, Gyürky G, Imbriani G, Junker M, Kievsky A, Kochanek I, Lugaro M, Marcucci L E, Mangano G, Marigo P, Masha E, Menegazzo R, Pantaleo F R, Paticchio V, Perrino R, Piatti D, Pisanti O, Prati P, Schiavulli L, Straniero O, Szücs T, Takács M P, Trezzi D, Viviani M, Zavatarelli S 2020 Nature 587 210Google Scholar

    [72]

    Piatti D, Chillery T, Depalo R, Aliotta M, Bemmerer D, Best A, Boeltzig A, Broggini C, Bruno C G, Caciolli A, Cavanna F, Ciani G F, Corvisiero P, Csedreki L, Davinson T, Di Leva A, Elekes Z, Ferraro F, Fiore E M, Formicola A, Fülöp Zs, Gervino G, Gnech A, Guglielmetti A, Gustavino C, Gyürky Gy, Imbriani G, Junker M, Kochanek I, Lugaro M, Marcucci L E, Marigo P, Masha E, Menegazzo R, Mossa V, Pantaleo F R, Paticchio V, Perrino R, Prati P, Schiavulli L, Stöckel K, Straniero O, Szücs T, Takács M P, Zavatarelli S 2020 Phys. Rev. C 102 052802(R

    [73]

    Skowronski J, Boeltzig A, Ciani G F, Csedreki L, Piatti D, Aliotta M, Ananna C, Barile F, Bemmerer D, Best A, Broggini C, Bruno C G, Caciolli A, Campostrini M, Cavanna F, Colombetti P, Compagnucci A, Corvisiero P, Davinson T, Depalo R, Di Leva A, Elekes Z, Ferraro F, Formicola A, Fülöp Zs, Gervino G, Gesuè R M, Guglielmetti A, Gustavino C, Gyürky Gy, Imbriani G, Junker M, Lugaro M, Marigo P, Masha E, Menegazzo R, Paticchio V, Perrino R, Prati P, Rapagnani D, Rigato V, Schiavulli L, Sidhu R S, Straniero O, Szücs T, Zavatarelli S 2023 Phys. Rev. Lett. 131 162701Google Scholar

    [74]

    Pantaleo F R, Boeltzig A, Best A, Perrino R, Aliotta M, Balibrea-Correa J, Barile F, Bemmerer D, Broggini C, Bruno C G, Buompane R, Caciolli A, Cavanna F, Chillery T, Ciani G F, Corvisiero P, Csedreki L, Davinson T, deBoer R J, Depalo R, D'Erasmo G, Di Leva A, Elekes Z, Ferraro F, Fiore E M, Formicola A, Fülöp Zs, Gervino G, Guglielmetti A, Gustavino C, Gyürky Gy, Imbriani G, Junker M, Kochanek I, Lugaro M, Masha E, Menegazzo R, Mossa V, Paticchio V, Piatti D, Prati P, Rapagnani D, Schiavulli L, Stöckel K, Straniero O, Szücs T, Takács M P, Trezzi D, Wiescher M, Zavatarelli S 2021 Phys. Rev. C 104 025802Google Scholar

    [75]

    Piatti D, Masha E, Aliotta M, Balibrea-Correa J, Barile F, Bemmerer D, Best A, Boeltzig A, Broggini C, Bruno C G, Caciolli A, Cavanna F, Chillery T, Ciani G F, Compagnucci A, Corvisiero P, Csedreki L, Davinson T, Depalo R, Di Leva A, Elekes Z, Ferraro F, Fiore E M, Formicola A, Fülöp Zs, Gervino G, Guglielmetti A, Gustavino C, Gyürky Gy, Imbriani G, Junker M, Lugaro M, Marigo P, Menegazzo R, Mossa V, Pantaleo F R, Paticchio V, Perrino R, Prati P, Rapagnani D, Schiavulli L, Skowronski J, Stöckel K, Straniero O, Szücs T, Takács M P, Zavatarelli S 2022 Eur. Phys. J. A 58 194Google Scholar

    [76]

    Ciani G F, Csedreki L, Rapagnani D, Aliotta M, Balibrea-Correa J, Barile F, Bemmerer D, Best A, Boeltzig A, Broggini C, Bruno C G, Caciolli A, Cavanna F, Chillery T, Colombetti P, Corvisiero P, Cristallo S, Davinson T, Depalo R, Di Leva A, Elekes Z, Ferraro F, Fiore E, Formicola A, Fülöp Zs, Gervino G, Guglielmetti A, Gustavino C, Gyürky Gy, Imbriani G, Junker M, Lugaro M, Marigo P, Masha E, Menegazzo R, Mossa V, Pantaleo F R, Paticchio V, Perrino R, Piatti D, Prati P, Schiavulli L, Stöckel K, Straniero O, Szücs T, Takács M P, Terrasi F, Vescovi D, Zavatarelli S 2021 Phys. Rev. Lett. 127 152701Google Scholar

    [77]

    Dombos A C, Robertson D, Simon A, Kadlecek T, Hanhardt M, Görres J, Couder M, Kelmar R, Olivas-Gomez O, Stech E, Strieder F, Wiescher M 2022 Phys. Rev. Lett. 128 162701Google Scholar

    [78]

    Straniero O, Imbriani G, Strieder F, Bemmerer D, Broggini C, Caciolli A, Corvisiero P, Costantini H, Cristallo S, Di Leva A, Formicola A, Elekes Z, Fülöp Zs, Gervino G, Guglielmetti A, Gustavino C, Gyürky Gy, Junker M, Lemut A, Limata B, Marta M, Mazzocchi C, Menegazzo R, Piersanti L, Prati P, Roca V, Rolfs C, Rossi Alvarez C, Somorjai E, Terrasi F, Trautvetter H-P 2013 Astrophys. J. 763 100Google Scholar

    [79]

    Su J, Zhang H, Li Z H, Ventura P, Li Y J, Li E, Chen C, Shen Y P, Lian G, Guo B, Li X Y, Zhang L Y, He J J, Shen Y D, Chen Y J, Wang L H, Zhang L, Cao F Q, Nan W, Nan W K, Li G X, Song N, Cui B Q, Chen L H, Ma R G, Zhang Z C, Jiao T Y, Gao B S, Tang X D, Wu Q, Li J Q, Sun L T, Wang S, Yan S Q, Liao J H, Wang Y B, Zeng S, Nan D, Fan Q W, Qi N C, Sun W L, Guo X Y, Zhang P, Chen Y H, Zhou Y, Zhou J F, He J R, Shang C S, Li M C, Cheng J P, Liu W P 2022 Sci. Bull. 67 125Google Scholar

    [80]

    Gao B, Jiao T Y, Li Y T, Chen H, Lin W P, An Z, Ru L H, Zhang Z C, Tang X D, Wang X Y, Zhang N T, Fang X, Xie D H, Fan Y H, Ma L, Zhang X, Bai F, Wang P, Fan Y X, Liu G, Huang H X, Wu Q, Zhu Y B, Chai J L, Li J Q, Sun L T, Wang S, Cai J W, Li Y Z, Su J, Zhang H, Li Z H, Li Y J, Li E T, Chen C, Shen Y P, Lian G, Guo B, Li X Y, Zhang L Y, He J J, Sheng Y D, Chen Y J, Wang L H, Zhang L, Cao F Q, Nan W, Nan W K, Li G X, Song N, Cui B Q, Chen L H, Ma R G, Zhang Z C, Yan S Q, Liao J H, Wang Y B, Zeng S, Nan D, Fan Q W, Qi N C, Sun W L, Guo X Y, Zhang P, Chen Y H, Zhou Y, Zhou J F, He J R, Shang C S, Li M C, Kubono S, Liu W P, deBoer R J, Wiescher M, Pignatari M 2022 Phys. Rev. Lett. 129 132701Google Scholar

    [81]

    Zhang L Y, He J J, deBoer R J, Wiescher M, Heger A, Kahl D, Su J, Odell D, Chen Y J, Li X Y, Wang J G, Zhang L, Cao F Q, Zhang H, Zhang Z C, Jiang X Z, Wang L H, Li Z M, Song L Y, Zhao H W, Sun L T, Wu Q, Li J Q, Cui B Q, Chen L H, Ma R G, Li E T, Lian G, Sheng Y D, Li Z H, Guo B, Zhou X H, Zhang Y H, Xu H S, Cheng J P, Liu W P 2022 Nature 610 656Google Scholar

    [82]

    Zhang L Y, Su J, He J J, Wiescher M, deBoer R J, Kahl D, Chen Y J, Li X Y, Wang J G, Zhang L, Cao F Q, Zhang H, Zhang Z C, Jiao T Y, Sheng Y D, Wang L H, Song L Y, Jiang X Z, Li Z M, Li E T, Wang S, Lian G, Li Z H, Tang X D, Zhao H W, Sun L T, Wu Q, Li J Q, Cui B Q, Chen L H, Ma R G, Guo B, Xu S W, Li J Y, Qi N C, Sun W L, Guo X Y, Zhang P, Chen Y H, Zhou Y, Zhou J F, He J R, Shang C S, Li M C, Zhou X H, Zhang Y H, Zhang F S, Hu Z G, Xu H S, Chen J P, Liu W P 2022 Phys. Rev. Lett. 127 152702

    [83]

    Wang L H, Su J, Shen Y P, He J J, Lugaro M, Szányi B, Karakas A I, Zhang L Y, Li X Y, Guo B, Lian G, Li Z H, Wang Y B, Chen L H, Cui B Q, Tang X D, Gao B S, Wu Q, Sun L T, Wang S, Sheng Y D, Chen Y J, Zhang H, Li Z M, Song L Y, Jiang X Z, Nan W, Nan W K, Zhang L, Cao F Q, Jiao T Y, Ru L H, Cheng J P, Wiescher M, Liu W P 2023 Phys. Rev. Lett. 130 092701Google Scholar

    [84]

    Liu W P, Guo B, An Z, Cui B Q, Fang X, Fu C B, Gao B S, He J J, Jiang Y C, Lv C, Li E T, Li G X, Li Y J, Li Z H, Lian G, Lin W P, Liu Y H, Nan W, Nan W K, Shen Y P, Song N, Su J, Sun L T, Tang X D, Wang L H, Wang S, Wang Y B, Wu D, Xi X F, Yan S Q, Zhang L Y 2024 Nucl. Sci. Tech. 35 217Google Scholar

    [85]

    Randhawa J S, Ayyad Y, Mittig W, Meisel Z, Ahn T, Aguilar S, Alvarez-Pol H, Bardayan D W, Bazin D, Beceiro-Novo S, Blankstein D, Carpenter L, Cortesi M, Cortina-Gil D, Gastis P, Hall M, Henderson S, Kolata J J, Mijatovic T, Ndayisabye F, O’Malley P, Pereira J, Pierre A, Robert H, Santamaria C, Schatz H, Smith J, Watwood N, Zamora J C 2020 Phys. Rev. Lett. 125 202701Google Scholar

    [86]

    Nan W, Shen Y P, Guo B, Li Z H, Li Y J, Pang D Y, Su J, Yan S Q, Fan Q W, Liu J C, Chen C, Li X Y, Lian G, Ma T L, Nan W K, Wang Y B, Zeng S, Zhang H, Liu W P 2024 Phys. Rev. C 109 045808Google Scholar

    [87]

    Shen Y P, Guo B, deBoer R J, Li Z H, Li Y J, Tang X D, Pang D Y, Adhikari S, Basu C, Su J, Yan S Q, Fan Q W, Liu J C, Chen C, Han Z Y, Li X Y, Lian G, Ma T L, Nan W, Nan W K, Wang Y B, Zeng S, Zhang H, Liu W P 2022 Phys. Rev. Lett. 124 162701

    [88]

    Wiescher M, deBoer R J, Görres J 2023 Eur. Phys. J. A 59 11Google Scholar

    [89]

    Longland R, Dermigny J, Marshall C 2018 Phys. Rev. C 98 025802Google Scholar

    [90]

    Mohr P, Longland R, Iliadis C 2014 Phys. Rev. C 90 065806Google Scholar

    [91]

    Wallner A, Bichler M, Coquard L, Dillmann I, Forstner O, Golser R, Heil M, Käppeler F, Kutschera W, Lederer-Woods C, Martschini M, Mengoni A, Merchel S, Michlmayr L, Priller A, Steier P, Wiescher M 2019 Phys. Rev. C 99 015804Google Scholar

    [92]

    Dermigny J, Iliadis C, Champagne A, Longland R 2020 Phys. Rev. C 102 014609Google Scholar

    [93]

    Bao Z Y, Beer H, Käppeler F, Voss F, Wisshak K, Rauscher T 2000 At. Data Nucl. Data Tables 76 70Google Scholar

    [94]

    周勇, 李志宏, 张海黔 2015 原子能科学技术 11 1921

    Zhou Y, Li Z H, Zhang H Q 2015 Atom. Energy Sci. Technol. 11 1921

  • [1] DENG Xiang-Quan, ZHOU Shan-Gui. Systematic Study of the Synthesis Cross Sections of Superheavy Nuclei with the Dinuclear System Model. Acta Physica Sinica, doi: 10.7498/aps.75.20251309
    [2] CHEN Shengli, WANG Tianxiang. Consistency analysis and nuclear data validation for two series of beryllium reflector critical benchmark experiments. Acta Physica Sinica, doi: 10.7498/aps.74.20241685
    [3] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, doi: 10.7498/aps.70.20201685
    [4] Wu Si-Yuan, Wang Yu-Qi, Xiao Rui-Juan, Chen Li-Quan. Development and application of battery materials database. Acta Physica Sinica, doi: 10.7498/aps.69.20201542
    [5] Gong Wu-Kun, Guo Wen-Jun. Hadron-quark deconfinement phase transition in hybrid stars. Acta Physica Sinica, doi: 10.7498/aps.69.20200925
    [6] He Xue-Min, Zhong Wei, Du You-Wei. Controllable synthesis and performance of magnetic nanocomposites with core/shell structure. Acta Physica Sinica, doi: 10.7498/aps.67.20181027
    [7] Li Zhi-Wen, He Xue-Min, Yan Shi-Ming, Song Xue-Yin, Qiao Wen, Zhang Xing, Zhong Wei, Du You-Wei. Synthesis, microstructure, and magnetic properties of -Fe2O3/NiO core/shell nanoflowers. Acta Physica Sinica, doi: 10.7498/aps.65.147101
    [8] Pei Xiao-Xing, Zhong Jia-Yong, Zhang Kai, Zheng Wu-Di, Liang Gui-Yun, Wang Fei-Lu, Li Yu-Tong, Zhao Gang. W43A Jet:strongly related to the magnetic field testified in laboratory. Acta Physica Sinica, doi: 10.7498/aps.63.145201
    [9] Huang Xiao-Lin, Hou Li-Zhen, Yu Bo-Wen, Chen Guo-Liang, Wang Shi-Liang, Ma Liang, Liu Xin-Li, He Yue-Hui. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures. Acta Physica Sinica, doi: 10.7498/aps.62.108102
    [10] Dong Jian-Min, Li Jun-Qing, Su Xin-Ning, Wang Yan-Zhao, Zhang Hong-Fei, Zuo Wei. Influence of electron gas on nuclear structure in compact objects. Acta Physica Sinica, doi: 10.7498/aps.58.2294
    [11] Hu Zheng-Guo, Wang Meng, Xu Hu-Shan, Sun Zhi-Yu, Wang Jian-Song, Xiao Guo-Qing, Zhan Wen-Long, Xiao Zhi-Gang, Mao Rui-Shi, Zhang Hong-Bin, Zhao Tie-Cheng, Xu Zhi-Guo, Wang Yue, Chen Ruo-Fu, Huang Tian-Heng, Gao Hui, Jia Fei, Fu Fen, Gao Qi, Han Jian-Long. Experimental study for neutron-rich exotic nuclei 17B. Acta Physica Sinica, doi: 10.7498/aps.57.2866
    [12] Huang Ming-Hui, Gan Zai-Guo, Fan Hong-Mei, Su Peng-Yuan, Ma Long, Zhou Xiao-Hong, Li Jun-Qing. The driving potential and cross sections for synthesizing super heavy nuclei with hot fusion. Acta Physica Sinica, doi: 10.7498/aps.57.1569
    [13] Jia Fei, Xu Hu-Shan, Zheng Chuan, Fan Rui-Rui, Zhang Xue-Ying, Li Jun-Qing, Scheid W.. Study of the mechanism for synthesizing superheavy nuclei based on dinuclear system. Acta Physica Sinica, doi: 10.7498/aps.56.2047
    [14] Liu Jian-Ye, Zuo Wei, Lee Xi-Guo, Xing Yong-Zhong. Isospin effect in the nuclear reaction induced by neutron-halo nuclei. Acta Physica Sinica, doi: 10.7498/aps.56.1339
    [15] Li JiaXing, Guo ZhongYan, Xiao GuoQing, Zhan WenLong, Wang JianSong, Sun ZhiYu, Wang Meng, Tian WenDong, Wang WuSheng, Mao RuiShi, Wang QuanJin, Ning ZhenJiang, Wang JianFeng. Fitting the data of nonexotic structural nuclear total reaction cross section with a corrected Glauber model. Acta Physica Sinica, doi: 10.7498/aps.52.58
    [16] XIA JIANG-FAN, ZHANG JUN, ZHANG JIE. MODELING THE ASTROPHYSICAL DYNAMICAL PROCESS WITH LASER-PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.50.994
    [17] NING ZHEN-JIANG, LI JIA-XING, GUO ZHONG-YAN, ZHAN WEN-LONG, WANG JIAN-SONG, XIAO GUO-QING, WANG QUAN-JIN, WANG JIN-CHUAN, WANG MENG, WANG JIAN-FENG, CHEN ZHI-QIANG. MEASUREMENT OF TOTAL REACTION CROSS SECTIONFOR EXOTIC LIGHT PROTON-RICH NUCLEUS 12N. Acta Physica Sinica, doi: 10.7498/aps.50.644
    [18] MIAO JING-WEI, SHI MIAN-GONG, YANG BAI-FANG, TANG A-YOU, N.CUE. EXPERIMENTAL DETERMINATION FOR 4HeH+ INTERNUCLEAR SEPARATION. Acta Physica Sinica, doi: 10.7498/aps.49.1058
    [19] О ЭФФЕКТЕ СОСТАВНЫХ ЯДЕР В ЯДЕРНЫХ РЕАКЦИЯХ ПРИ НИЗКИХ ЭНЕРГИИ. Acta Physica Sinica, doi: 10.7498/aps.18.227
    [20] C. T. YOUNG. NUCLEAR REACTIONS AND NUCLEAR STRUCTURE. Acta Physica Sinica, doi: 10.7498/aps.18.275
Metrics
  • Abstract views:  295
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2025
  • Accepted Date:  06 November 2025
  • Available Online:  12 November 2025
  • /

    返回文章
    返回