搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双核模型的超重原子核合成截面系统研究

邓祥泉 周善贵

引用本文:
Citation:

基于双核模型的超重原子核合成截面系统研究

邓祥泉, 周善贵

Systematic Study of the Synthesis Cross Sections of Superheavy Nuclei with the Dinuclear System Model

DENG Xiang-Quan, ZHOU Shan-Gui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 超重原子核的合成是当前核物理领域的前沿问题。反应体系的选取和最佳入射能量的确定 对超重核的实验合成至关重要。利用稳定弹核能够合成的超重核非常有限,而放射性弹核熔合 蒸发反应有望成为合成超重核的新途径,有必要对这类反应进行全面、深入的探索。本工作基 于双核模型,开展放射性弹核熔合蒸发反应系统研究。根据合成 Z = 104–122 超重元素同位 素的 4969 个反应体系的计算结果,建立了超重核合成截面数据集。数据集包含这些反应体系 2 到 5 中子蒸发道合成的超重核素、最佳入射能和最大蒸发剩余截面。这一数据集可为实验合 成超重新核素乃至超重新元素提供关键支撑,具有较大应用价值。本工作深入探讨了计算结果 中蕴含的系统性规律。结果表明,众多反应体系的合成截面差异甚大,复合体系的内熔合位垒 和复合核的裂变位垒,是影响反应体系截面的重要因素。本文数据集可通过访问科学数据银行 http://www.doi.org/10.57760/sciencedb.27854 获取(审稿阶段请通过私有访问链接查看本文数据 集 https://www.scidb.cn/s/bimY7j)。
    The synthesis of superheavy nuclei (SHN) is a leading research frontier in nuclear physics today. In the experiments for synthesizing SHN via fusion-evaporation reactions, the appropriate choice of projectile-target combination and determination of the optimal incident energy are crucial. The number of SHN that can be synthesized with stable projectiles is very small. The fusion-evaporation reaction with radioactive projectile is one of the promising ways for SHN synthesis and it is of great significance to investigate this kind of reactions deeply. In this work a systematic study has been carried out on the fusion-evaporation reactions with radioactive projectiles. The capture cross section is calculated with the empirical coupled channel model, the fusion probability is computed by the dinuclear system model with a dynamical potential energy surface (DNS-DyPES model) and the survival probability is determined through the statistical model.
    In the systematic study, 11 actinide isotopes with $Z=90$--100 are used as targets which are $^{232}$Th, $^{231}$Pa, $^{238}$U, $^{237}$Np, $^{244}$Pu, $^{243}$Am, $^{248}$Cm, $^{249}$Bk, $^{251}$Cf, $^{254}$Es and $^{257}$Fm. Projectiles are isotopes between proton and neutron drip lines for elements $Z=4$--32 and most of these projectiles are radioactive. By combining these projectiles and targets, 4969 reaction systems are proposed for synthesizing isotopes of superheavy elements Z=104-122. Through large-scale calculations, the excitation functions for $2n$--$5n$ evaporation channels of each reaction system are obtained. With the results of these reaction systems, we establish a synthesis cross section dataset for superheavy nuclei. For each reaction system, the dataset includes the identities of the synthesized SHN, the optimal incident energies and the maximal evaporation residue cross sections in $2n$-$5n$ evaporation channels. This dataset may serve as a theoretical support for synthesizing new superheavy nuclides and elements.
    Additionally, taking the reactions with $^{232}$Th target as examples, we discuss systematic trends in the results and explore the underlying SHN synthesis mechanism. The synthesis cross sections of these reactions, shown in Fig. 1, are in vastly differences. We find that inner fusion barrier of the compound system formed after the projectile touches the target and fission barrier of the compound nucleus are key factors that influence the synthesis cross section. Qualitatively, the projectile-target combinations with relatively large synthesis cross sections are featured by a lower inner fusion barrier in the compound system formed upon contact which favors fusion and a higher fission barrier in the compound nucleus which enhances survival probability. These conclusions may provide valuable references for the theoretical research related to superheavy nuclei synthesis. The dataset presented in this paper are available at the Science Data Bank at http://www.doi.org/10.57760/sciencedb.27854 (Please use the private access link https://www.scidb.cn/s/bimY7j to access the dataset during the peer review process).
  • [1]

    Li L L, Lu B N, Wang N, Wen K, Xia C J, Zhang Z H, Zhao J, Zhao E G, Zhou S G 2014 Nucl. Phys. Rev. 31 253 (in Chinese)[李璐璐, 吕炳楠, 王楠, 温凯, 夏铖君, 张振华, 赵杰, 赵恩广, 周善贵 2014 原子核物理评论 31 253]

    [2]

    Zhou S G 2014 PHYSICS 43 817 (in Chinese)[周善贵 2014 物理 43 817]

    [3]

    Oganessian Y T, Utyonkov V K 2015 Rep. Prog. Phys. 78 036301

    [4]

    Adamian G G, Antonenko N V, Bezbakh A N, Jolos R V 2016 Phys. Part. Nucl. 47 387

    [5]

    Zhou S G 2017 Nucl. Phys. Rev. 34 318 (in Chinese)[周善贵 2017 原子核物理评论 34 318]

    [6]

    Li L, Guo L, Godbey K, Umar A S 2022 Phys. Lett. B 833 137349

    [7]

    Gan Z G, Huang W X, Xu H S, Zhao H W 2024 PHYSICS 53 803 (in Chinese)[甘再国, 黄文学, 徐 瑚珊, 赵红卫 2024 物理 53 803]

    [8]

    Li L, Guo L, Godbey K, Umar A S 2024 Phys. Rev. C 110 064607

    [9]

    Jiang Y M, Zhang D D, Zhou S G 2025 PHYSICS 54 599 (in Chinese)[姜义铭, 张丹丹, 周善贵 2025 物理 54 599]

    [10]

    Xing F Z, Le X K, Wang N, Wang Y Z 2025 Acta Phys. Sin. 74 112301 (in Chinese)[邢凤竹, 乐先 凯, 王楠, 王艳召 2025 物理学报 74 112301]

    [11]

    Zhang M H, Zhang Z Y, Gan Z G, Zhou S G, Zhang F S 2025 Nucl. Sci. Tech. 36 204

    [12]

    Bohr N, Wheeler J A 1939 Phys. Rev. 56 426

    [13]

    Myers W D, Swiatecki W J 1967 Ark. Phys. 36 343

    [14]

    Strutinsky V M 1966 Yad. Fiz. 3 614

    [15]

    Strutinsky V 1967 Nucl. Phys. A 95 420

    [16]

    Sobiczewski A, Gareev F, Kalinkin B 1966 Phys. Lett. 22 500

    [17]

    Meldner H 1967 Arkiv Fysik 36 593

    [18]

    Rutz K, Bender M, Bürvenich T, Schilling T, Reinhard P G, Maruhn J A, Greiner W 1997 Phys. Rev. C 56 238

    [19]

    Wong C Y 1966 Phys. Lett. 21 688

    [20]

    Nilsson S G, Tsang C F, Sobiczewski A, Szymański Z, Wycech S, Gustafson C, Lamm I L, Möller P, Nilsson B 1969 Nucl. Phys. A 131 1

    [21]

    Mosel U, Greiner W 1969 Z. Phys. A 222 261

    [22]

    Zhang W, Meng J, Zhang S Q, Geng L S, Toki H 2005 Nucl. Phys. A 753 106

    [23]

    Sobiczewski A, Pomorski K 2007 Prog. Part. Nucl. Phys. 58 292

    [24]

    Malov L A, Adamian G G, Antonenko N V, Lenske H 2021 Phys. Rev. C 104 064303

    [25]

    Chen H J, Sheng H W, Huang W H, Wu B Q, Zhao T L, Bao X J 2025 Acta Phys. Sin. 74 192301 (in Chinese)[陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军 2025 物理学报 74 192301]

    [26]

    Zagrebaev V, Greiner W 2008 Phys. Rev. C 78 034610

    [27]

    Hofmann S 2011 Radiochim. Acta 99 405

    [28]

    Hofmann S, Münzenberg G 2000 Rev. Mod. Phys. 72 733

    [29]

    Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Kanungo R, Katori K, Koura H, Kudo H, Ohnishi T, Ozawa A, Suda T, Sueki K, Xu H S, Yamaguchi T, Yoneda A, Yoshida A, Zhao Y L 2004 J. Phys. Soc. Jpn. 73 2593

    [30]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Shirokovsky I V, Tsyganov Y S, Gulbekian G G, Bogomolov S L, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Voinov A A, Buklanov G V, Subotic K, Zagrebaev V I, Itkis M G, Patin J B, Moody K J, Wild J F, Stoyer M A, Stoyer N J, Shaughnessy D A, Kenneally J M, Lougheed R W 2004 Phys. Rev. C 69 021601(R)

    [31]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Shirokovsky I V, Tsyganov Y S, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Voinov A A, Buklanov G V, Subotic K, Zagrebaev V I, Itkis M G, Patin J B, Moody K J, Wild J F, Stoyer M A, Stoyer N J, Shaughnessy D A, Kenneally J M, Lougheed R W 2004 Phys. Rev. C 69 054607

    [32]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602

    [33]

    Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502

    [34]

    Boilley D, Cauchois B, Lü H L, Marchix A, Abe Y, Shen C W 2018 Nucl. Sci. Tech. 29 172

    [35]

    Adamian G G, Antonenko N V, Scheid W 2003 Phys. Rev. C 68 034601

    [36]

    Jia F, Xu H S, Zheng C, Fan R R, Zhang X Y, Li J Q, Scheid W 2007 Acta Phys. Sin. 56 2047 (in Chinese)[贾飞, 徐瑚珊, 郑川, 樊瑞睿, 张雪荧, 李君清, W. Scheid 2007 物理学报 56 2047]

    [37]

    Huang M H, Gan Z G, Fan H M, Su P Y, Ma L, Zhou X H, Li J Q 2008 Acta Phys. Sin. 57 1569 (in Chinese)[黄明辉, 甘再国, 范红梅, 苏朋源, 马龙, 周小红, 李君清 2008 物理学报 57 1569]

    [38]

    Nasirov A K, Giardina G, Mandaglio G, Manganaro M, Hanappe F, Heinz S, Hofmann S, Muminov A I, Scheid W 2009 Phys. Rev. C 79 024606

    [39]

    Wang N, Zhao E G, Scheid W, Zhou S G 2012 Phys. Rev. C 85 041601(R)

    [40]

    Bao X J, Gao Y, Li J Q, Zhang H F 2015 Phys. Rev. C 92 034612

    [41]

    Li F, Zhu L, Wu Z H, Yu X B, Su J, Guo C C 2018 Phys. Rev. C 98 014618

    [42]

    Adamian G G, Antonenko N V, Lenske H, Malov L A 2020 Phys. Rev. C 101 034301

    [43]

    Yang X X, Zhang G, Li J J, Li B, Zhang X R, Sokhna Cheikh A T, Cheng S H, Zhang Y H, Wang C, Zhang F S 2020 Nucl. Phys. Rev. 37 151 (in Chinese)[杨秀秀,张根,李静静, 李冰, 张欣蕊, A. T. Sokhna Cheikh, 程诗慧, 张钰海, 王晨, 张丰收 2020 原子核物理评论 37 151]

    [44]

    Niu F, Chen P H, Feng Z Q 2021 Nucl. Sci. Tech. 32 103

    [45]

    Li J X, Zhang H F 2022 Phys. Rev. C 105 054606

    [46]

    Deng X Q, Zhou S G 2023 Phys. Rev. C 107 014616

    [47]

    Zagrebaev V I, Karpov A V, Greiner W 2012 Phys. Rev. C 85 014608

    [48]

    Liu Z H, Bao J D 2014 Phys. Rev. C 89 024604

    [49]

    Siwek-Wilczyńska K, Cap T, Kowal M 2019 Phys. Rev. C 99 054603

    [50]

    Liu L, Shen C W, Li Q F, Tu Y, Wang X B, Wang Y J 2016 Eur. Phys. J. A 52 35

    [51]

    Loveland W 2007 Phys. Rev. C 76 014612

    [52]

    Wang N, Tian J, Scheid W 2011 Phys. Rev. C 84 061601(R)

    [53]

    Zhang J J, Wang C B, Ren Z Z 2013 Nucl. Phys. A 909 36

    [54]

    Zhu L, Xie W J, Zhang F S 2014 Phys. Rev. C 89 024615

    [55]

    Ghahramany N, Ansari A 2016 Eur. Phys. J. A 52 287

    [56]

    Santhosh K P, Safoora V 2017 Phys. Rev. C 96 034610

    [57]

    Lv X J, Yue Z Y, Zhao W J, Wang B 2021 Phys. Rev. C 103 064616

    [58]

    Wang B, Yue Z Y, Zhao W J 2021 Phys. Rev. C 103 034605

    [59]

    Zhu L 2023 Phys. Rev. Res. 5 L022030

    [60]

    Guo L, Shen C W, Yu C, Wu Z J 2018 Phys. Rev. C 98 064609

    [61]

    Volkov V V 1978 Phys. Rep. 44 93

    [62]

    Wang N, Zhao E G, Scheid W 2014 Phys. Rev. C 89 037601

    [63]

    Sun X X, Guo L 2022 Phys. Rev. C 105 054610

    [64]

    Sun X X, Guo L 2023 Phys. Rev. C 107 064609

    [65]

    Roberto J B, Alexander C W, Boll R A, Burns J D, Ezold J G, Felker L K, Hogle S L, Rykaczewski K P 2015 Nucl. Phys. A 944 99

    [66]

    Roberto J B 2018 Prog. Nucl. Sci. Tech. 5 14

    [67]

    Robinson S M, Benker D E, Collins E D, Ezold J G, Garrison J R, Hogle S L 2020 Radiochim. Acta 108 737

    [68]

    Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Methods Phys. Res. B 317 263

    [69]

    Ma X, Wen W Q, Zhang S F, Yu D Y, Cheng R, Yang J, Huang Z K, Wang H B, Zhu X L, Cai X, Zhao Y T, Mao L J, Yang J C, Zhou X H, Xu H S, Yuan Y J, Xia J W, Zhao H W, Xiao G Q, Zhan W L 2017 Nucl. Instrum. Methods Phys. Res. B 408 169

    [70]

    Adamian G G, Antonenko N V, Scheid W 2004 Phys. Rev. C 69 044601

    [71]

    Zagrebaev V I 2004 Prog. Theo. Phys. Supp. 154 122

    [72]

    Loveland W 2013 J. Phys: Conf. Ser. 420 012004

    [73]

    Aritomo Y 2007 Phys. Rev. C 75 024602

    [74]

    Bao X J, Gao Y, Li J Q, Zhang H F 2015 Phys. Rev. C 91 064612

    [75]

    Hong J, Adamian G G, Antonenko N V 2017 Phys. Rev. C 96 014609

    [76]

    Wu Z H, Zhu L, Li F, Yu X B, Su J, Guo C C 2018 Phys. Rev. C 97 064609

    [77]

    Zhang M H, Zou Y, Wang M C, Zhang G, Niu Q L, Zhang F S 2024 Nucl. Sci. Tech. 35 161

    [78]

    Deng X Q 2023 Ph. D. Dissertation (Beijing: Institute of Theoretical Physics, Chinese Academy of Sciences) (in Chinese)[邓祥泉 2023 博士学位论文 (北京:中国科学院理论物理研究所)]

    [79]

    Adamian G G, Antonenko N V, Scheid W, Volkov V V 1998 Nucl. Phys. A 633 409

    [80]

    Wang B, Wen K, Zhao W J, Zhao E G, Zhou S G 2017 At. Data Nucl. Data Tables 114 281

    [81]

    Li W, Wang N, Li J F, Xu H, Zuo W, Zhao E, Li J Q, Scheid W 2003 Europhys. Lett. 64 750

    [82]

    Feng Z Q, Jin G M, Fu F, Li J Q 2006 Nucl. Phys. A 771 50

    [83]

    Wang N, Li J Q, Zhao E G 2008 Phys. Rev. C 78 054607

    [84]

    Grangé P, Li J Q, Weidenmüller H 1983 Phys. Rev. C 27 2063

    [85]

    Adamian G G, Antonenko N V, Jolos R V, Ivanova S P, Melnikova O I 1996 Int. J. Mod. Phys. E 5 191

    [86]

    Wong C Y 1973 Phys. Rev. Lett. 31 766

    [87]

    Audi G, Wapstra A H, Thibault C 2003 Nucl. Phys. A 729 337

    [88]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185

    [89]

    Bohr A, Mottelson B R 1975 Nuclear Structure (Vol. II) (New York: Benjamin) p658

    [90]

    Wolschin G 1979 Phys. Lett. B 88 35

    [91]

    Xia C J, Sun B X, Zhao E G, Zhou S G 2011 Sci. China Phys. Mech. Astron. 54 s109

    [92]

    Jackson J D 1956 Can. J. Phys. 34 767

    [93]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1

    [94]

    Toke J, Światecki W J 1981 Nucl. Phys. A 372 141

    [95]

    Schmidt K H, Morawek W 1991 Rep. Prog. Phys. 54 949

    [96]

    Ignatyuk A V, Istekov K K, Smirenkin G N 1979 Yad. Fiz. 29 875

    [97]

    Zubov A S, Adamian G G, Antonenko N V 2009 Phys. Part. Nucl. 40 847

    [98]

    Bhat M R 1991 Proceedings of an International Conference on Nuclear Data for Science and Technology Forschungszentrum Jülich, Fed. Rep. of Germany, May 13–17, 1991 p817

    [99]

    Nishio K, Mitsuoka S, Nishinaka I, Makii H, Wakabayashi Y, Ikezoe H, Hirose K, Ohtsuki T, Aritomo Y, Hofmann S 2012 Phys. Rev. C 86 034608

    [100]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Shirokovsky I V, Tsyganov Y S, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Voinov A A, Buklanov G V, Subotic K, Zagrebaev V I, Itkis M G, Patin J B, Moody K J, Wild J F, Stoyer M A, Stoyer N J, Shaughnessy D A, Kenneally J M, Wilk P A, Lougheed R W, Il’kaev R I, Vesnovskii S P 2004 Phys. Rev. C 70 064609

    [101]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Henderson R A, Kenneally J M, Landrum J H, Moody K J, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2007 Phys. Rev. C 76 011601(R)

    [102]

    Oganessian Y T, Abdullin F S, Dmitriev S N, Gostic J M, Hamilton J H, Henderson R A, Itkis M G, Moody K J, Polyakov A N, Ramayya A V, Roberto J B, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Stoyer N J, Subbotin V G, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K 2013 Phys. Rev. C 87 014302

    [103]

    Oganessian Y T, Abdullin F S, Alexander C, Binder J, Boll R A, Dmitriev S N, Ezold J, Felker K, Gostic J M, Grzywacz R K, Hamilton J H, Henderson R A, Itkis M G, Miernik K, Miller D, Moody K J, Polyakov A N, Ramayya A V, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Shumeiko M V, Stoyer M A, Stoyer N J, Subbotin V G, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K 2013 Phys. Rev. C 87 054621

    [104]

    Oganessian Y T, Utyonkov V K, Kovrizhnykh N D, Abdullin F S, Dmitriev S N, Ibadullayev D, Itkis M G, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Sagaidak R N, Schlattauer L, Shirokovski I V, Shubin V D, Shumeiko M V, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Bodrov A Y, Sabel’nikov A V, Khalkin A V, Zlokazov V B, Rykaczewski K P, King T T, Roberto J B, Brewer N T, Grzywacz R K, Gan Z G, Zhang Z Y, Huang M H, Yang H B 2022 Phys. Rev. C 106 L031301

  • [1] 夏金戈, 李伟峰, 方基宇, 牛中明. 原子核β衰变寿命经验公式. 物理学报, doi: 10.7498/aps.73.20231653
    [2] 焦宝宝. 基于原子核密度的核电荷半径新关系. 物理学报, doi: 10.7498/aps.72.20230126
    [3] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试. 物理学报, doi: 10.7498/aps.72.20230213
    [4] 屈卫卫, 张高龙, 乐小云. 利用双折叠模型对弹核为的熔合垒高度和位置的系统学分析. 物理学报, doi: 10.7498/aps.61.152501
    [5] 郑曙东, 李博文, 李冀光, 董晨钟, 袁文渊. 原子核的有限体积效应对高离化态离子能级和波函数的影响. 物理学报, doi: 10.7498/aps.58.1556
    [6] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, doi: 10.7498/aps.57.1569
    [7] 贾 飞, 徐瑚珊, 郑 川, 樊瑞睿, 张雪荧, 李君清, W. Scheid. 基于双核模型对超重元素合成机制的研究. 物理学报, doi: 10.7498/aps.56.2047
    [8] 钱兴, 江栋兴, 林俊松, 刘大鸣, 李泽. 离线γ技术测量重离子熔合复合核平均角动量. 物理学报, doi: 10.7498/aps.45.754
    [9] 孟杰. 转动原子核的对关联变化. 物理学报, doi: 10.7498/aps.42.368
    [10] 王广厚. 15N原子核共振反应及Pd中的氢剖析. 物理学报, doi: 10.7498/aps.33.53
    [11] 杨国琛. 关于原子核的gR因子. 物理学报, doi: 10.7498/aps.19.771
    [12] 轻原子核中的超流效应. 物理学报, doi: 10.7498/aps.19.360
    [13] 杨澄中. 原子核反应和核结构. 物理学报, doi: 10.7498/aps.18.275
    [14] 张历宁, 戴元本. 原子核中μ介子的辐射俘获. 物理学报, doi: 10.7498/aps.17.41
    [15] 何泽慧, 陆祖荫, 孙汉城. 为原子核科学研究用的原子核乳膠核-2,核-3,制备方法的研究. 物理学报, doi: 10.7498/aps.15.131
    [16] 于敏. 关于重原子核的壳结构理论. 物理学报, doi: 10.7498/aps.15.420
    [17] 何国柱. 电子和X射线激发原子核. 物理学报, doi: 10.7498/aps.14.289
    [18] 于敏, 邓稼先, 周孝谦, 李扬国. 轻原子核的变形. 物理学报, doi: 10.7498/aps.14.449
    [19] 李整武. 轻原子核的质量. 物理学报, doi: 10.7498/aps.13.30
    [20] 黄长风. 照相膠板术确定重原子核本性的方法. 物理学报, doi: 10.7498/aps.8.183
计量
  • 文章访问数:  23
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-29

/

返回文章
返回