搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子核熔合反应研究进展

张钰海 董益菲 仲佳勇 张丰收

引用本文:
Citation:

原子核熔合反应研究进展

张钰海, 董益菲, 仲佳勇, 张丰收

Research Progress in Nuclear Fusion Reactions

ZHANG Yuhai, DONG Yifei, ZHONG Jiayong, ZHANG Fengshou
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 熔合反应不仅为研究量子多体系统中的动态演化和耗散机制提供了关键信息, 也为探索原子核反应动力学与结构特征开辟了重要途径. 本文系统给出了从氢到钔不同质量区元素的合成路径, 以及从轻体系到重体系的各类重离子熔合反应的实验进展. 评述了现有理论模型在描述俘获过程中的优越性与局限性, 重点分析了唯象模型与微观动力学模型对不同反应体系熔合行为的优势与不足. 在此基础上, 进一步凝炼出熔合反应研究中的若干关键科学问题, 包括重离子熔合阻碍、极深垒下熔合抑制、熔合几率$P_{\text{CN}}$以及复合核的裂变势垒等, 并对未来熔合反应的研究方向提出了展望与建议. 本文数据集可在科学数据银行数据库https://doi.org/10.57760/sciencedb.j00213.00238中访问获取.
    Fusion reactions not only provide key information for studying the dynamic evolution and dissipation mechanisms in quantum many-body systems, but also open up an important avenue for exploring the reaction dynamics and structural characteristics of atomic nuclei. In recent years, with the continuous development of the technology for synthesizing new elements and their isotopes via fusion reactions, a series of new elements and their isotopes have been successfully synthesized. This paper systematically summarizes the synthesis pathways of elements in different mass regions, ranging from hydrogen to mendelevium, as well as the experimental progress of various heavy-ion fusion reactions from light systems to heavy systems. It reviews the advantages and limitations of current theoretical models in describing the capture process, and focuses on analyzing the strengths and shortcomings of phenomenological models and microscopic dynamic models in explaining the fusion behavior of different reaction systems. For the capture cross sections in light nuclei-light nuclei reaction systems, the EBD method, the CCFULL model, the universal Wong formula, and the ImQMD model all demonstrate good agreement with the experimental data. For the systems involving light nuclei-medium mass nuclei and light nuclei-heavy nuclei, the mentioned above models provide satisfactory descriptions. In particular, for the 16O+144Sm reaction system, the results obtained from the CCFULL model show good agreement with experimental data across both the sub-barrier and above-barrier energy regions. For the heavy nuclei-heavy nuclei systems, however, the EBD method holds a distinct advantage. Therefore, in subsequent predictions of the evaporation residue cross sections for superheavy elements, the results calculated by the EBD method can serve as the input for the capture cross section. On this basis, several key scientific issues in fusion reaction research are proposed, including heavy-ion fusion hindrance, the phenomenon of fusion suppression at extreme sub-barrier energies, fusion probability $P_{\text{CN}}$, and the fission barrier of compound nuclei, etc. Furthermore, an outlook and suggestions for future research directions in fusion reactions are provided.
  • 图 1  元素核合成的各种过程, 该图改自文献[14]

    Fig. 1.  Various processes of nucleosynthesis, this figure adapted from the Ref.[14].

    图 2  实验上测得的合成Z = 102—113的熔合反应以及48Ca弹核引起的热熔合反应的总蒸发剩余截面[46]

    Fig. 2.  Experimental total evaporation residues cross sections for the synthesis of elements Z = 102—113 via fusion reactions and 48Ca beam-induced hot fusion reactions[46]

    图 3  反应体系16O+144Sm中俘获截面的理论计算结果与实验数据的对比, 实验数据取自文献[38]

    Fig. 3.  Comparison of theoretical calculations of the capture cross section in the reaction system 16O+144Sm with experimental data, and the experimental data are taken from the Ref. [38].

    图 4  (a) 基于FBD模型计算的48Ca+244Pu的俘获截面$ \sigma_{\text{cap}} $和熔合截面$ \sigma_{\text{fus}} $; (b) 基于FBD模型计算的48Ca+248Cm的俘获截面$ \sigma_{\text{cap}} $和熔合截面$ \sigma_{\text{fus}} $[83]

    Fig. 4.  (a) The capture cross sections $ \sigma_{\text{cap}} $ and fusion cross sections $ \sigma_{\text{fus}} $ for the 48Ca+244Pu system calculated by the FBD model; (b) The capture cross sections $ \sigma_{\text{cap}} $ and fusion cross sections $ \sigma_{\text{fus}} $ for the 48Ca+248Cm system calculated by the FBD model[83].

    图 5  (a) 反应体系51V+245Cm的蒸发剩余截面; (b) 反应体系51V+248Cm的蒸发剩余截面[94]

    Fig. 5.  (a) The predicted evaporation residue cross sections of the reaction 51V+245Cm; (b) The predicted evaporation residue cross sections of the reaction 51V+248Cm[94].

    图 6  (a) 反应体系48Ca+208Pb的俘获截面; (b) 反应体系48Ca+208Pb的熔合激发函数[106]

    Fig. 6.  (a) The capture cross sections of the 48Ca+208Pb reaction; (b) The excitation functions of the $ xn $-evaporation channel ($ x=2-5 $) in the reaction 48Ca+208Pb[106].

    图 7  (a) 反应体系40Ca+48Ca的熔合激发函数; (b) 反应体系16O+208Pb的熔合激发函数[115]

    Fig. 7.  (a) The fusion excitation functions for 40Ca+48Ca; (b) The excitation functions for 16O+208Pb[115].

    图 8  (a) 58Ni+58Ni反应不同弥散参数下的熔合激发函数; (b) 58Ni+58Ni反应不同弥散参数下的指数斜率[121]

    Fig. 8.  (a) The fusion excitation functions for the $ ^{58}{\rm{Ni}}+^{58}{\rm{Ni}} $ reaction for different surface diffuseness parameters; (b) The logarithmic slopes for the $ {}^{58}{\rm{Ni}}+{}^{58}{\rm{Ni}} $ reaction for different surface diffuseness parameters[121].

    表 1  在轻核-轻核反应体系中, 实验观测到的熔合截面与该入射能量下理论模型的比较

    Table 1.  Comparison between experimental cross sections and theoretical models for light nuclei-light nuclei fusion reaction systems at the incident energy.

    反应体系 $ E_{\text{c.m.}} $(MeV) $ \sigma_{\text{fus}}^{\text{exp}} $(mb) $ \sigma_{\text{fus}}^{\text{ECC}} $(mb) $ \sigma_{\text{fus}}^{\text{EBD2}} $[62](mb) $ \sigma_{\text{fus}}^{\text{CCFULL}} $[65](mb) $ \sigma_{\text{fus}}^{\text{Wong}} $(mb) $ \sigma_{\text{fus}}^{\text{ImQMD}} $(mb)
    12C+14C→26Mg 8.000 393.355[30] 936.203 513.288 606.788 505.773 477.836
    14N+16O→30P 11.988 429.722[27] 777.552 445.524 448.672 476.894
    16O+16O→32S 12.514 433.638[29] 659.073 337.543 413.014 334.054 342.434
    12C+20Ne→32S 14.965 467.280[28] 873.843 639.505 762.936 696.192 698.062
    下载: 导出CSV

    表 2  在轻核-中重核、轻核-重核反应体系中, 实验观测到的俘获截面与该入射能量下理论模型的比较

    Table 2.  Comparison between experimental cross sections and theoretical models for light nuclei-medium mass nuclei and light nuclei-heavy nuclei fusion reaction systems at the incident energy.

    反应体系 $ E_{\text{c.m.}} $(MeV) $ \sigma_{\text{cap}}^{\text{exp}} $[71](mb) $ \sigma_{\text{cap}}^{\text{ECC}} $(mb) $ \sigma_{\text{cap}}^{\text{EBD2}} $[62](mb) $ \sigma_{\text{cap}}^{\text{CCFULL}} $[65](mb) $ \sigma_{\text{cap}}^{\text{Wong}} $(mb) $ \sigma_{\text{cap}}^{\text{ImQMD}} $(mb)
    12C+206Pb→218Ra 80.150 872.246 1113.600 986.338 852.125 1113.373 1322.925
    14N+232Th→246Bk 86.390 823.000 656.404 676.666 745.517 912.004
    15N+209Bi→224Th 82.297 705.589 785.167 704.484 769.015 965.097
    16O+209Bi→225Pa 93.185 688.362 732.198 659.206 743.462 917.345
    16O+144Sm→160Yb 80.89 876.000 870.274 776.450 879.439 857.778 1013.1636
    16O+208Pb→226Th 100.72 949.000 974.760 888.832 1173.059 1022.355 1222.394
    23Na+48Ti→71As 45.207 687.284 645.242 583.905 682.850 757.438
    28Si+208Pb→236Cm 156.821 726.666 371.941 656.247 471.170 766.809 1032.956
    30Si+238U→268Sg 169.001 780.325 638.769 673.966 447.388 751.604 976.721
    34S+89Y→123Cs 91.050 505.000 465.149 434.505 464.238 544.124
    37Cl+100Mo→137Pr 94.539 250.231 217.034 274.459 280.626 346.832
    下载: 导出CSV

    表 3  在重核-重核反应体系中, 实验观测到的俘获截面与该入射能量下理论模型的比较

    Table 3.  Comparison between experimental cross sections and theoretical models for heavy nuclei-heavy nuclei fusion reaction systems at the incident energy.

    反应体系 $ E_{\text{c.m.}} $(MeV) $ \sigma_{\text{cap}}^{\text{exp}} $[72](mb) $ \sigma_{\text{cap}}^{\text{ECC}} $(mb) $ \sigma_{\text{cap}}^{\text{EBD2}} $[62](mb) $ \sigma_{\text{cap}}^{\text{Wong}} $(mb) $ \sigma_{\text{cap}}^{\text{ImQMD}} $(mb)
    48Ca+238U→286Cn 214.7 502 ± 100 375.835 359.819 367.476 562.973
    48Ca+244Pu→292Fl 204 126 ± 63 133.976 153.076 160.059 195.093
    48Ca+248Cm→296Lv 206 69 ± 35 108.700 120.816 132.157 176.872
    48Ti+238U→286Fl 226 250 ± 40 191.874 153.741 197.252 256.668
    52Cr+232Th→284Fl 261 410 ± 100 364.361 255.807 344.598 603.500
    52Cr+248Cm→300120 251 88 ± 10 145.230 77.347 117.075 146.084
    54Cr+248Cm→302120 242 15 ± 3 58.305 36.777 60.473 70.529
    64Ni+238U→302120 301 123 ± 37 42.351 139.730 137.971 452.075
    下载: 导出CSV
  • [1]

    马余刚, 2020 原子核物理新进展(上海交通大学出版社)第245—304页

    Ma Y G 2020 Recent Progress in Nuclear Physics (Shanghai: Shanghai Jiao Tong University Press), pp 245–304.

    [2]

    张丰收, 葛凌霄 1998 原子核多重碎裂(科学出版社) 第268—274页

    Zhang F S, Ge L X 1998 Nuclear Multifragmentation (Beijing: Science Press), pp 268–274.

    [3]

    张丰收, 张钰海, 张明昊, 唐娜, 程诗慧, 李静静, 程伟 2022 北京师范大学学报(自然科学版) 58 392

    Zhang F S, Zhang Y H, Zhang M H, Tang N, Cheng S H, Li J J, Cheng W 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 392

    [4]

    Thoennessen M 2016 The discovery of isotopes (Springer International Publishing Switzerland), pp 23–35

    [5]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [6]

    Bohr N 1936 Usp. Fiz. Nauk 16 425Google Scholar

    [7]

    Weisskopf V F, Ewing D H 1940 Phys. Rev. 57 472Google Scholar

    [8]

    Hauser W, Feshbach H 1952 Phys. Rev. 87 366Google Scholar

    [9]

    Stokstad R G, Eisen Y, Kaplanis S, Pelte D, Smilansky U, Tserruya I 1980 Phys. Rev. C 21 2427Google Scholar

    [10]

    唐晓东, 李阔昂 2019 物理 48 633

    Tang X D, Li K A 2019 Phys. 48 633

    [11]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar

    [12]

    Cameron A G W 2013 Stellar evolution, nuclear astrophysics, and nucleogenesis (Dover Publications), pp 5–10

    [13]

    Fowler W A 1984 Rev. Mod. Phys. 56 149Google Scholar

    [14]

    柳卫平, 张玉虎, 郭冰, 白希祥, 何建军, 唐晓东 2017 核物理与等离子体物理: 学科前沿及发展战略(上册: 核物理卷)第四章核天体物理 第207—223页

    Liu W P, Zhang Y H, Guo B, Bai X X, He J J, Tang X D 2017 Nuclear Physics and Plasma Physics: Discipline Development Strategy(Nuclear Physics Volume) (Beijing: Science Press), pp 207–223.

    [15]

    Matis H 2019 Nuclear Science—A Guide to the Nuclear Science Wall Chart (Contemporary Physics Education Project), pp 10–1–10–5

    [16]

    José J, Iliadis C 2011 Rep. Prog. Phys. 74 096901Google Scholar

    [17]

    Arnould M, Goriely S 2003 Phys. Rep. 384 1Google Scholar

    [18]

    刘佳佳, 张钰海, 张丰收 2025 原子能科学技术 59 265

    Liu J J, Zhang Y H, Zhang F S 2025 At. Energy Sci. Technol. 59 265

    [19]

    McMillan E, Abelson P H 1940 Phys. Rev. 57 1185

    [20]

    Seaborg G T, Mcmillan E M, Kennedy J W, Wahl A C 1946 Phys. Rev. 69 366

    [21]

    Seaborg G T 1994 The chemical and radioactive properties of the heavy elements (World Scientific), pp 20–23

    [22]

    Ghiorso A, James R A, Morgan L O, Seaborg G T 1950 Phys. Rev. 78 472

    [23]

    Thompson S G, Ghiorso A, Seaborg G T 1950 Phys. Rev. 77 838

    [24]

    Thompson S G, Street K, Ghiorso A, Seaborg G T 1950 Phys. Rev. 78 298

    [25]

    Ghiorso A, Thompson S G, Higgins G H, Seaborg G T, Studier M H, Fields P R, Fried S M, Diamond H, Mech J F, Pyle G L, Huizenga J R, Hirsch A, Manning W M, Browne C I, Smith H L, Spence R W 1955 Phys. Rev. 99 1048Google Scholar

    [26]

    Ghiorso A, Harvey B G, Choppin G R, Thompson S G, Seaborg G T 1955 Phys. Rev. 98 1518Google Scholar

    [27]

    Stokstad R G, Switkowski Z E, Dayras R A, Wieland R M 1976 Phys. Rev. Lett. 37 888Google Scholar

    [28]

    Hulke G, Rolfs C, Trautvetter H P 1980 Z. Phys. A: At. Nucl. 297 161Google Scholar

    [29]

    Thomas J, Chen Y T, Hinds S, Langanke K, Meredith D, Olson M, Barnes C A 1985 Phys. Rev. C 31 1980

    [30]

    Dasmahapatra B, Čujec B 1993 Nucl. Phys. A 565 657Google Scholar

    [31]

    An R, Jiang X, Tang N, Cao L G, Zhang F S 2024 Phys. Rev. C 109 064302

    [32]

    林承键, 2018 重离子核反应 (哈尔滨工程大学出版社) 第134—168页

    Lin C J 2018 Nuclear Reactions with Heavy Ions (Harbin: Harbin Engineering University Publishing), pp 134–168.

    [33]

    Murakami T, Sahm C C, Vandenbosch R, Leach D D, Ray A, Murphy M J 1986 Phys. Rev. C 34 1353Google Scholar

    [34]

    Broglia R, Dasso C, Landowne S, Pollarolo G 1983 Phys. Lett. B 133 34Google Scholar

    [35]

    Timmers H, Leigh J, Dasgupta M, Hinde D, Lemmon R, Mein J, Morton C, Newton J, Rowley N 1995 Nucl. Phys. A 584 190Google Scholar

    [36]

    Morton C R, Berriman A C, Dasgupta M, Hinde D J, Newton J O, Hagino K, Thompson I J 1999 Phys. Rev. C 60 044608Google Scholar

    [37]

    Wei J X, Leigh J R, Hinde D J, Newton J O, Lemmon R C, Elfstrom S, Chen J X, Rowley N 1991 Phys. Rev. Lett. 67 3368Google Scholar

    [38]

    Leigh J R, Dasgupta M, Hinde D J, Mein J C, Morton C R, Lemmon R C, Lestone J P, Newton J O, Timmers H, Wei J X, Rowley N 1995 Phys. Rev. C 52 3151

    [39]

    Donets E D, Shchegolev V A, Ermakov V A 1966 Sov. At. Energy 20 257Google Scholar

    [40]

    Zager B A, Miller M B, Mikheev V L, Polikanov S M, Sukhov A M, Flerov G N, Chelnokov L P 1966 Sov. At. Energy 20 264Google Scholar

    [41]

    Donets E D, Shchegolev V A, Ermakov V A 1965 Sov. At. Energy 19 995Google Scholar

    [42]

    Eskola K, Eskola P, Nurmia M, Ghiorso A 1971 Phys. Rev. C 4 632Google Scholar

    [43]

    Ghiorso A, Nurmia M, Harris J, Eskola K, Eskola P 1969 Phys. Rev. Lett. 22 1317Google Scholar

    [44]

    Ghiorso A, Nurmia M, Eskola K, Harris J, Eskola P 1970 Phys. Rev. Lett. 24 1498Google Scholar

    [45]

    Ghiorso A, Nitschke J M, Alonso J R, Alonso C T, Nurmia M, Seaborg G T, Hulet E K, Lougheed R W 1974 Phys. Rev. Lett. 33 1490Google Scholar

    [46]

    Oganessian Y 2013 Nucl. Phys. News 23 15Google Scholar

    [47]

    Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Kanungo R, Katori K, Koura H, et al 2004 J. Phys. Soc. Jpn. 73 2593Google Scholar

    [48]

    Zhang M H, Zou Y, Wang M C, Zhang G, Niu Q L, Zhang F S 2024 Nucl. Sci. Tech. 35 161Google Scholar

    [49]

    Zhang F S, Li C, Zhu L, Wen P W 2018 Front. Phys. 13 132113Google Scholar

    [50]

    张钰海, 张根, 李静静, 程伟, 张丰收 2022 同位素 35 104

    Zhang Y H, Zhang G, Li J J, Cheng W, Zhang F S 2022 J. Isot. 35 104

    [51]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Dmitriev S N, Henderson R A, Moody K J, Kenneally J M, Landrum J H, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2009 Phys. Rev. C 79 024603Google Scholar

    [52]

    Hofmann S, Heinz S, Mann R, Maurer J, Münzenberg G, Antalic S, Barth W, Burkhard H, Dahl L, Eberhardt K, et al 2016 Eur. Phys. J. A 52 180Google Scholar

    [53]

    Khuyagbaatar J, Yakushev A, Düllmann C E, Ackermann D, Andersson L L, Asai M, Block M, Boll R A, Brand H, Cox D M, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates J M, Gharibyan N, Golubev P, Gregorich K E, Hamilton J H, Hartmann W, Herzberg R D, Heßberger F P, Hinde D J, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz J V, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A K, Mokry C, Nitsche H, Omtvedt J P, Pang G K, Papadakis P, Renisch D, Roberto J B, Rudolph D, Runke J, Rykaczewski K P, Sarmiento L G, Schädel M, Schausten B, Semchenkov A, Shaughnessy D A, Steinegger P, Steiner J, Tereshatov E E, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Wegrzecki M, Wiehl N, Van Cleve S M, Yakusheva V 2020 Phys. Rev. C 102 064602Google Scholar

    [54]

    Tanaka M, Brionnet P, Du M, Ezold J, Felker K, Gall B J, Go S, Grzywacz R K, Haba H, Hagino K, Hogle S, Ishizawa S, Kaji D, Kimura S, King T, Komori Y, K Lemon R, G Leonard M, Morimoto K, Morita K, Nagae D, Naito N, Niwase T, C Rasco B, B Roberto J, P Rykaczewsk K, Sakaguchi S, Sakai H, Shigekawa Y, W Stracener D, VanCleve, Shelley, Wang Y, Washiyama K, Yokokita T 2022 J. Phys. Soc. Jpn. 91 084201Google Scholar

    [55]

    Oganessian Y T, Utyonkov V K, Abdullin F S, Dmitriev S N, Ibadullayev D, Itkis M G, Karpov A V, Kovrizhnykh N D, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Sagaidak R N, Saiko V V, Schlattauer L, Shubin V D, Shumeiko M V, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Sabelnikov A V, Abdusamadzoda D, Bodrov A Y, Voronyuk M G, Bozhikov G A, Aksenov N V, Khalkin A V, Gan Z G, Zhang Z Y, Huang M H, Yang H B, Wang J G, Zhang M M, Huang X Y 2025 Phys. Rev. C 112 014603Google Scholar

    [56]

    Zagrebaev V 2019 Heavy Ion Reactions at Low Energies (Springer Nature), pp 105–145

    [57]

    Hill D L, Wheeler J A 1953 Phys. Rev. 89 1102Google Scholar

    [58]

    Zagrebaev V I, Aritomo Y, Itkis M G, Oganessian Y T, Ohta M 2001 Phys. Rev. C 65 014607Google Scholar

    [59]

    Siwek-Wilczyńska K, Wilczyński J 2004 Phys. Rev. C 69 024611Google Scholar

    [60]

    Cap T, Siwek-Wilczyńska K, Wilczyński J 2011 Phys. Rev. C 83 054602Google Scholar

    [61]

    Lü H, Marchix A, Abe Y, Boilley D 2016 Comput. Phys. Commun. 200 381Google Scholar

    [62]

    http://www.imqmd.com/fusion/EBD2 a.html

    [63]

    Chuluunbaatar O, Gusev A, Vinitsky S, Abrashkevich A, Wen P, Lin C 2022 Comput. Phys. Commun. 278 108397Google Scholar

    [64]

    Hagino K, Rowley N, Kruppa A 1999 Comput. Phys. Commun. 123 143Google Scholar

    [65]

    https://www2.yukawa.kyoto-u.ac.jp/kouichi.hagino/ccfull.html

    [66]

    Stefanini A M, Corradi L, Vinodkumar A M, Feng Y, Scarlassara F, Montagnoli G, Beghini S, Bisogno M 2000 Phys. Rev. C 62 014601Google Scholar

    [67]

    Baby L T, Tripathi V, Das J J, Sugathan P, Madhavan N, Sinha A K, Radhakrishna M C, Madhusudhana Rao P V, Hui S K, Hagino K 2000 Phys. Rev. C 62 014603Google Scholar

    [68]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [69]

    Liu M, Wang N, Li Z X, Wu X Z, Zhao E G 2006 Nucl. Phys. A 768 80Google Scholar

    [70]

    Wang N, Chen J, Wang Y, Yao H 2025 Phys. Rev. C 111 024621Google Scholar

    [71]

    Wang B, Wen K, Zhao W J, Zhao E G, Zhou S G 2017 At. Data Nucl. Data Tables 114 281Google Scholar

    [72]

    Itkis M G, Knyazheva G N, Itkis I M, Kozulin E M 2022 Eur. Phys. J. A 58 178Google Scholar

    [73]

    Swiatecki W 1981 Phys. Scr. 24 113Google Scholar

    [74]

    Bjørnholm S, Swiatecki W J 1982 Nucl. Phys. A 391 471Google Scholar

    [75]

    Blocki J, Feldmeier H, Swiatecki W 1986 Nucl. Phys. A 459 145Google Scholar

    [76]

    Aritomo Y, Wada T, Ohta M, Abe Y 1999 Phys. Rev. C 59 796Google Scholar

    [77]

    Zagrebaev V I 2001 Phys. Rev. C 64 034606Google Scholar

    [78]

    Shen C, Kosenko G, Abe Y 2002 Phys. Rev. C 66 061602

    [79]

    Shen C, Abe Y, Boilley D, Kosenko G, Zhao E 2008 Int. J. Mod. Phys. E 17 66Google Scholar

    [80]

    Shen C, Abe Y, Li Q, Boilley D 2009 Sci. China Ser. G 52 1458Google Scholar

    [81]

    Swiatecki W J, Siwek-Wilczynska K, Wilczynski J 2005 Phys. Rev. C 71 014602Google Scholar

    [82]

    Siwek-Wilczynska K, Cap T, Kowal M, Sobiczewski A, Wilczynski J 2012 Phys. Rev. C 86 014611Google Scholar

    [83]

    Cap T, Kowal M, Siwek-Wilczyńska K 2022 Eur. Phys. J. A 58 231Google Scholar

    [84]

    Adamian G, Antonenko N, Jolos R, Palchikov Y V, Scheid W, Shneidman T 2004 Phys. At. Nucl. 67 1701Google Scholar

    [85]

    左维, 李君清, 赵恩广 2006 原子核物理评论 23 382

    Zuo W, Li J Q, Zhao E G 2006 Nucl. Phys. Rev. 23 382

    [86]

    Feng Z Q, Jin G M, Li J Q, Scheid W 2007 Phys. Rev. C 76 044606Google Scholar

    [87]

    Wang N, Li J Q, Zhao E G 2008 Phys. Rev. C 78 054607Google Scholar

    [88]

    Yu L, Gan Z G, Huang M H, Zhang H F, Li J Q 2013 Nucl. Phys. Rev. 30 299

    [89]

    Yu L, Gan Z G, Zhang Z Y, Zhang H F, Li J Q 2014 Phys. Lett. B 730 105Google Scholar

    [90]

    Zhu L, Su J, Li C, Zhang F S 2022 Phys. Lett. B 829 137113Google Scholar

    [91]

    Zhu L, Su J 2021 Phys. Rev. C 104 044606Google Scholar

    [92]

    Zhang M H, Wang M C, Zou Y, Li J J, Zhang G, Zhang F S 2025 Phys. Rev. C 111 024611Google Scholar

    [93]

    Li J J, Li C, Zhang G, Zhu L, Liu Z, Zhang F S 2017 Phys. Rev. C 95 054612Google Scholar

    [94]

    Zhang M H, Zhang Y H, Zou Y, Wang C, Zhu L, Zhang F S 2024 Phys. Rev. C 109 014622Google Scholar

    [95]

    杨秀秀, 张根, 李静静, 李冰, 张欣蕊, A. T. Sokhna Cheikh, 程诗慧, 张钰海, 王晨, 张丰收 2020 原子核物理评论 37 151

    Yang X X, Zhang G, Li J J, Li B, Zhang X R, Cheikh A T S, Cheng S H, Zhang Y H, Wang C, Zhang F S 2020 Nucl. Phys. Rev. 37 151

    [96]

    Zhang M H, Zou Y, Wang M C, Niu Q L, Zhang G, Zhang F S 2025 Chin. Phys. C 49 054107Google Scholar

    [97]

    Zhang M H, Zhang Z Y, Gan Z G, Zhou S G, Zhang F S 2025 Nucl. Sci. Tech. 36 204Google Scholar

    [98]

    张明昊, 张钰海, 李静静, 唐娜, 孙帅, 张丰收 2023 核技术 46 080014

    Zhang M H, Zhang Y H, Li J J, Tang N, Sun S, Zhang F S 2023 Nucl. Tech. 46 080014

    [99]

    Zhang M H, Zhang Y H, Zou Y, Yang X X, Zhang G, Zhang F S 2024 Nucl. Sci. Tech. 35 95Google Scholar

    [100]

    Li J J, Tang N, Zhang Y H, Zhang M H, Wang C, Zhang X R, Zhu L, Zhang F S 2023 Int. J. Mod. Phys. E 32 2330002

    [101]

    Fang Y P, Gao Z P, Zhang Y N, Liao Z H, Yang Y, Su J, Zhu L 2024 Phys. Lett. B 858 139069Google Scholar

    [102]

    Gao Z P, Liu S Y, Wen P W, Liao Z H, Yang Y, Su J, Wang Y J, Zhu L 2024 Phys. Rev. C 109 024601Google Scholar

    [103]

    邹盈, 张钰海, 唐娜, 李静静, 张丰收 2023 原子能科学技术 57 762

    Zou Y, Zhang Y H, Tang N, Li J J, Zhang F S 2023 At. Energy Sci. Technol. 57 762

    [104]

    Chen L W, Ge L X, Zhang X D, Zhang F S 1997 J. Phys. G: Nucl. Part. Phys. 23 211Google Scholar

    [105]

    Chen L W, Zhang F S, Jin G M 1998 Phys. Rev. C 58 2283Google Scholar

    [106]

    Zhang Y H, Zhang G, Li J J, Liu Z, Yeremin A V, Zhang F S 2022 Phys. Rev. C 106 014625Google Scholar

    [107]

    Dirac P A M 1930 Note on exchange phenomena in the Thomas atom (Cambridge University Press), pp 376–385

    [108]

    Sekizawa K 2019 Front. Phys. 7 20Google Scholar

    [109]

    Ren Z X, Zhao P W, Meng J 2020 Phys. Lett. B 801 135194Google Scholar

    [110]

    Ren Z X, Zhao P W, Meng J 2020 Phys. Rev. C 102 044603Google Scholar

    [111]

    Bonche P, Grammaticos B, Koonin S 1978 Phys. Rev. C 17 1700

    [112]

    Umar A S, Strayer M R, Reinhard P G 1986 Phys. Rev. Lett. 56 2793Google Scholar

    [113]

    Godbey K, Umar A S, Simenel C 2022 Phys. Rev. C 106 L051602Google Scholar

    [114]

    Sun X X, Guo L 2023 Phys. Rev. C 107 064609Google Scholar

    [115]

    Yao H, Yang H, Wang N 2024 Phys. Rev. C 110 014602Google Scholar

    [116]

    Jiang X, Wang N, An R 2025 Phys. Rev. C 111 044604Google Scholar

    [117]

    Sahm C C, Clerc H G, Schmidt K H, Reisdorf W, Armbruster P, Heßberger F, Keller J, Münzenberg G, Vermeulen D 1984 Z. Phys. A: At. Nucl. 319 113Google Scholar

    [118]

    Schmidt K H, Morawek W 1991 Rep. Prog. Phys. 54 949Google Scholar

    [119]

    Boilley D, Lü H, Shen C, Abe Y, Giraud B G 2011 Phys. Rev. C 84 054608Google Scholar

    [120]

    Jiang C L, Esbensen H, Rehm K E, Back B B, Janssens R V F, Caggiano J A, Collon P, Greene J, Heinz A M, Henderson D J, Nishinaka I, Pennington T O, Seweryniak D 2002 Phys. Rev. Lett. 89 052701Google Scholar

    [121]

    Hagino K, Rowley N, Dasgupta M 2003 Phys. Rev. C 67 054603Google Scholar

    [122]

    Adamian G, Antonenko N, Scheid W 2000 Nucl. Phys. A 678 24Google Scholar

    [123]

    Smolańczuk R 2010 Phys. Rev. C 81 067602Google Scholar

    [124]

    Wang N, Tian J, Scheid W 2011 Phys. Rev. C 84 061601

    [125]

    Kozulin E M, Knyazheva G N, Itkis I M, Itkis M G, Bogachev A A, Chernysheva E V, Krupa L, Hanappe F, Dorvaux O, Stuttgé L, Trzaska W H, Schmitt C, Chubarian G 2014 Phys. Rev. C 90 054608Google Scholar

    [126]

    Zhu L, Xie W J, Zhang F S 2014 Phys. Rev. C 89 024615Google Scholar

    [127]

    Manjunatha H, Sowmya N, Munirathnam R, Sridhar K, Seenappa L, Damodara Gupta P 2023 Nucl. Phys. A 1032 122621Google Scholar

    [128]

    Nishio K, Mitsuoka S, Nishinaka I, Makii H, Wakabayashi Y, Ikezoe H, Hirose K, Ohtsuki T, Aritomo Y, Hofmann S 2012 Phys. Rev. C 86 034608Google Scholar

    [129]

    卢希庭, 江栋兴, 叶沿林, 2000 原子核物理 (原子能出版社) 第312—349页

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press), pp 312–349.

    [130]

    Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [131]

    Pei J C, Nazarewicz W, Sheikh J A, Kerman A K 2009 Phys. Rev. Lett. 102 192501Google Scholar

    [132]

    Qiao C Y, Pei J C 2022 Phys. Rev. C 106 014608Google Scholar

    [133]

    Yao H, Li C, Zhou H, Wang N 2024 Phys. Rev. C 109 034608Google Scholar

    [134]

    Chen Y, Yao H, Liu M, Tian J, Wen P, Wang N 2023 At. Data Nucl. Data Tables 154 101587Google Scholar

  • [1] 韩旭, 叶涛, 陈振鹏, 应阳君, 郭海瑞, 祖铁军. 基于R矩阵理论的氚氚反应截面数据评价. 物理学报, doi: 10.7498/aps.75.20251280
    [2] 黄智龙, 李志龙, 高泽鹏, 王永佳, 李庆峰. 机器学习预测熔合反应合成99–103Mo*的截面. 物理学报, doi: 10.7498/aps.75.20251527
    [3] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究. 物理学报, doi: 10.7498/aps.70.20210742
    [4] 杨欢, 邢玲玲, 张穗萌, 吴兴举, 袁好. 屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响. 物理学报, doi: 10.7498/aps.62.183402
    [5] 屈卫卫, 张高龙, 乐小云. 利用双折叠模型对弹核为的熔合垒高度和位置的系统学分析. 物理学报, doi: 10.7498/aps.61.152501
    [6] 陈学文, 方祯云, 张家伟, 钟涛, 涂卫星. 标准模型中两类中性玻色子混合圈链图传播子的重整化及其e+e-→μ+μ-反应截面. 物理学报, doi: 10.7498/aps.60.021101
    [7] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面. 物理学报, doi: 10.7498/aps.57.4817
    [8] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, doi: 10.7498/aps.57.1569
    [9] 刘建业, 左 维, 李希国, 邢永忠. 中子晕核引起核反应中的同位旋效应. 物理学报, doi: 10.7498/aps.56.1339
    [10] 贾 飞, 徐瑚珊, 黄天衡, 袁小华, 张宏斌, 李君清, W.Scheid. 基于双核模型对准裂变产物质量分布的研究. 物理学报, doi: 10.7498/aps.56.1347
    [11] 贾 飞, 徐瑚珊, 郑 川, 樊瑞睿, 张雪荧, 李君清, W. Scheid. 基于双核模型对超重元素合成机制的研究. 物理学报, doi: 10.7498/aps.56.2047
    [12] 李加兴, 郭忠言, 肖国青, 詹文龙, 王建松, 孙志宇, 王猛, 田文栋, 王武生, 毛瑞士, 王全进, 宁振江, 王建峰. 利用改进的Glauber模型对非奇异核核反应总截面数据的拟合. 物理学报, doi: 10.7498/aps.52.58
    [13] 杨少鹏, 傅广生, 李晓苇, 耿爱从, 韩 理. 立方体AgCl微晶中[Fe(CN)6]4-引入的浅电子陷阱阱深与俘获截面的动力学模拟. 物理学报, doi: 10.7498/aps.52.2649
    [14] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究. 物理学报, doi: 10.7498/aps.51.506
    [15] 宁振江, 李加兴, 郭忠言, 詹文龙, 王建松, 肖国青, 王全进, 王金川, 王猛, 王建峰, 陈志强. 质子滴线核12N在28Si靶上的核反应总截面测量. 物理学报, doi: 10.7498/aps.50.644
    [16] 傅春寅, 鲁永令, 曾树荣. 自由多子尾区俘获动力学及多子俘获截面的测量. 物理学报, doi: 10.7498/aps.37.485
    [17] 王同生, 叶为文, 马忠乾. 在Ne22照射U238核反应中观察到反常截面的金同位素. 物理学报, doi: 10.7498/aps.22.708
    [18] 陈鹤琴. 高能反中微子在O16上的俘获截面. 物理学报, doi: 10.7498/aps.20.512
    [19] 杨澄中. 原子核反应和核结构. 物理学报, doi: 10.7498/aps.18.275
    [20] 王德焴, 丘锡钧, 赵玄, 李白文, 陈金全. 关于低能核反应中的复合核效应. 物理学报, doi: 10.7498/aps.18.227
计量
  • 文章访问数:  356
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-24

/

返回文章
返回