搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习预测熔合反应合成99-103Mo*的截面

黄智龙 李志龙 高泽鹏 王永佳 李庆峰

引用本文:
Citation:

机器学习预测熔合反应合成99-103Mo*的截面

黄智龙, 李志龙, 高泽鹏, 王永佳, 李庆峰

Machine-learning predictions of fusion cross sections for synthesizing 99-103Mo*

HUANG Zhilong, LI Zhilong, Gao Zepeng, WANG Yongjia, LI Qingfeng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文基于梯度提升决策树(Gradient Boosting Decision Tree,GBDT)的机器学习算法,构建了一种用于预测99-103Mo*熔合反应截面(Cross Section,CS)的模型,旨在探索医用同位素99Mo的最优合成路径。模型输入包括反应能量、质子数、质量数及结合能等特征量,以及基于唯象理论模型计算的相关参数,输出量为熔合反应截面。研究发现,在测试集上机器学习预测的CS与实验值的平均绝对误差(Mean Absolute Error,MAE)为0.0615,优于EBD2模型预测的0.1103。在此基础上,结合GEMINI++程序计算了100-103Mo*的中子衰变道的存活几率进而得到99Mo的蒸发剩余截面,发现4He+97Zr在质心能量为18.51 MeV时的2n退激反应道的蒸发剩余截面为1199.80 mb,是合成99Mo的最优路径。该研究验证了基于物理信息的机器学习方法在熔合反应截面预测中的可靠性,可为优化反应体系选择及在重离子加速器上通过熔合反应产生医用同位素提供参考。本文数据集可在科学数据银行数据库https://doi.org/10.57760/sciencedb.j00213.00244中访问获取(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/zU3Yja)。
    Based on the Gradient Boosting Decision Tree (GBDT) machine learning algorithm, this study develops a model for predicting the fusion reaction cross-section (CS) of 99-103Mo*, aiming to explore the optimal synthesis pathway for the medical isotope 99Mo. The model inputs include characteristic quantities such as reaction energy, proton number, mass number, and binding energy, as well as relevant parameters calculated based on phenomenological theoretical models, with the output being the fusion reaction cross-section. It is found that the mean absolute error (MAE) between the machine learning-predicted CS and experimental values on the test set is 0.0615, which is superior to the 0.1103 predicted by the EBD2 model. On this basis, combined with the GEMINI++ program, the survival probabilities of the neutron decay channels for 99-103Mo* were calculated to derive the evaporation residue cross-section of 99Mo. It is found that the evaporation residue cross-section of the 2n de-excitation channel for 4He+97Zr at a center-of-mass energy of 18.51 MeV is 1199.80 mb, making it the optimal pathway for synthesizing 99Mo. This research validates the reliability of physics-informed machine learning methods in predicting fusion reaction cross-sections and provides a reference for optimizing reaction system selection and producing medical isotopes through fusion reactions in heavy-ion accelerators.
  • [1]

    Salih S, Alkatheeri A, Alomaim W, Elliyanti A 2022 Molecules 27 5231

    [2]

    Filippi L, Chiaravalloti A, Schillaci O, Cianni R, Bagni O 2020 Expert Review of Medical Devices 17 331

    [3]

    Gallamini A, Zwartboed C, Borra A 2014 Cancers 6 1821

    [4]

    Hsu B, Chen F C, Wu T C, Huang W S, Hou P N, Chen C C, Hung G U 2014 European Journal of Nuclear Medicine and Molecular Imaging 41 2294

    [5]

    Hasan S, Prelas M A 2020 SN Applied Sciences 2 1782

    [6]

    Stoddard M N, Harb J N, Memmott M J 2019 Annals of Nuclear Energy 129 56

    [7]

    Wang Y, Chen D, dos Santos Augusto R, Liang J, Qin Z, Liu J, Liu Z 2022 Molecules 27 5294

    [8]

    Dash A, Knapp Jr F R, Pillai M 2013 Nuclear Medicine and Biology 40 167

    [9]

    Liem P H, Tran H N, Sembiring T M 2015 Progress in Nuclear Energy 82 191

    [10]

    Le V S 2014 Science and Technology of Nuclear Installations 2014 345252

    [11]

    Lee S K, Beyer G J, Lee J S 2016 Nuclear Engineering and Technology 48 613

    [12]

    Xu W, Li J, Shi L 2024 Nuclear Engineering and Technology 56 3585

    [13]

    Youker A J, Chemerisov S D, Tkac P, Kalensky M, Heltemes T A, Rotsch D A, Vandegrift G F, Krebs J F, Makarashvili V, Stepinski D C 2017 Journal of Nuclear Medicine 58 514

    [14]

    Bénard F, Buckley K R, Ruth T J, Zeisler S K, Klug J, Hanemaayer V, Vuckovic M, Hou X, Celler A, Appiah J P, John M S K Valliant, Schaffer P 2014 Journal of Nuclear Medicine 55 1017

    [15]

    Wang H Y, Qiu Y J, Lin C J, Wu X G, Han Y L, Wu H Y, Feng J, Zheng Y, Yang L, Li C B, Luo T P, Chang C, Sun Q, Zhu D Y, Zhao Y X, Huang D H, Li T X, Zheng M, Zhao Z H, Zhu Y W, Zhao K L, Sun P F, Song J X, Guo M W, Ren S X, Zheng X H 2025 Acta Phys. Sin. 74 132501. (in Chinese) [王涵语, 邱奕嘉, 林承键, 吴晓光, 韩银录, 吴鸿毅, 冯晶, 郑云, 杨磊, 李聪博, 骆天鹏, 常昶, 孙琪, 朱德宇, 赵亦轩, 黄大湖, 李天晓, 郑敏, 赵子豪, 朱意威, 赵坤灵, 孙鹏飞, 宋金兴, 郭明伟, 任四禧, 郑小海 2025 物理学报 74 132501]

    [16]

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P, Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K T, Dang J R, Cai X H, Wang Y F, Tang J Y, Qiao W M, Rao Y N, He Y, Mao L Z, Zhou Z Z 2002 Nucl. Instrum. Meth. A 488 11

    [17]

    Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Liu J W, Jia X J, Zhou X P, Liu S H, Yin D Y, Chai W P, Wu J X, Song M T, Shen G D, Ma X M, Mao L J, Zhao H, Li Y M, Huang M W, Yin D X, Li J, Wang J C, Sheng L N 2013 Nucl. Instrum. Meth. B 317 263

    [18]

    Zhou X, Yang J 2022 AAPPS Bull. 32 35

    [19]

    Hong B 2023 AAPPS Bulletin 33 3

    [20]

    Hagino K, Rowley N, Kruppa A T 1999 Comput. Phys. Commun. 123 143

    [21]

    Wen P W, Chuluunbaatar O, Gusev A A, Nazmitdinov R G, Nasirov A K, Vinitsky S I, Lin C J, Jia H M 2020 Phys. Rev. C 101 014618

    [22]

    Simenel C, Umar A S 2018 Prog. Part. Nucl. Phys. 103 19

    [23]

    Simenel C 2012 Eur. Phys. J. A 48 152

    [24]

    Wang B, Wen K, Zhao W J, Zhao E G, Zhou S G 2017 Atom. Data Nucl. Data Tabl. 114 281

    [25]

    WANG B, WEN K, ZHAO W, ZHAO E, ZHOU S 2017 Chin. Sci. Bull. 62 2480

    [26]

    Wong C Y 1973 Phys. Rev. Lett. 31 766

    [27]

    Lwin N W, Htike N N, Hagino K 2017 Phys. Rev. C 95 064601

    [28]

    Vijay, Chahal R P, Gautam M S, Duhan S, Khatri H 2021 Phys. Rev. C 103 024607

    [29]

    Hill D L, Wheeler J A 1953 Phys. Rev. 89 1102

    [30]

    Zhu L, Feng Z Q, Li C, Zhang F S 2014 Phys. Rev. C 90 014612

    [31]

    Chen Y, Yao H, Liu M, Tian J, Wen P, Wang N 2023 Atom. Data Nucl. Data Tabl. 154 101587

    [32]

    Gao Z, Liu S, Wen P, Liao Z, Yang Y, Su J, Wang Y, Zhu L 2024 Phys. Rev. C 109 024601

    [33]

    Dell’Aquila D, Gnoffo B, Lombardo I, Porto F, Russo M 2023 J. Phys. G 50 015101

    [34]

    Cheng K X, He R X, Qiao C Y, Ma C W 2025 Nuclear Science and Techniques 36 194

    [35]

    Li Z, Wang Y, Li Q 2025 NUCLEAR TECHNIQUES 48 050012. (in Chinese) [李志龙,王永佳,李庆峰 2025 核技术 48 250132]

    [36]

    Li Z, Gao Z, Liu L, Wang Y, Zhu L, Li Q 2024 Physical Review C 109 024604

    [37]

    Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Reviews of Modern Physics 86 317

    [38]

    Wang N, Chen J, Wang Y, Yao H 2025 Physical Review C 111 024621

    [39]

    Cap T, Siwek-Wilczynska K, Wilczynski J 2011 Phys. Rev. C 83 054602

    [40]

    Siwek-Wilczynska K, Wilczynski J 2004 Phys. Rev. C 69 024611

    [41]

    Lü H, Marchix A, Abe Y, Boilley D 2016 Comput. Phys. Commun. 200 381

    [42]

    Wang N 2025 Chinese Physics C 49 124106

    [43]

    Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nuclear Science and Techniques 32 109

    [44]

    Gao Z, Li Q 2023 NUCLEAR TECHNIQUES 46 080009. (in Chinese) [高泽鹏,李庆峰 2023 核技术 46 080009]

    [45]

    Li Z, Wang Y, Li Q, Lv B f 2025 Physical Review C 112 014312

    [46]

    Dong X X, An R, Lu J X, Geng L S 2023 Phys. Lett. B 838 137726

    [47]

    Wu D, Bai C L, Sagawa H, Zhang H Q 2020 Phys. Rev. C 102 054323

    [48]

    Dong X X, An R, Lu J X, Geng L S 2022 Phys. Rev. C 105 014308

    [49]

    Su P, He W B, Fang D Q 2023 Symmetry 15 1040

    [50]

    Lv B, Wang Y, Li Z, Petrache C 2025 Physical Review C 111 064324

    [51]

    Lv B, Li Z, Wang Y, Petrache C 2024 Physics Letters B 857 139013

    [52]

    Li Z L, Lv B F, Wang Y J, Petrache C M 2026 Chinese Physics C 50 014107

    [53]

    Newton J O, Morton C R, Dasgupta M, Leigh J R, Mein J C, Hinde D J, Timmers H, Hagino K 2001 Phys. Rev. C 64 064608

    [54]

    Aguilera E F, Vega J J, Kolata J J, Morsad A, Tighe R G, Kong X J 1990 Phys. Rev. C 41 910

    [55]

    Aguilera E F, Kolata J J, Tighe R J 1995 Phys. Rev. C 52 3103

    [56]

    Szanto E M, Neto R L, Figueira M C S, Szanto de Toledo A, Herman M G, Nicolis N G, Stwertka P M, Cormier T M 1990 Phys. Rev. C 41 2164

    [57]

    Sonzogni A A, Bierman J D, Kelly M P, Lestone J P, Liang J F, Vandenbosch R 1998 Phys. Rev. C 57 722

    [58]

    Jiang C L, Back B B, Rehm K E, Hagino K, Montagnoli G, Stefanini A M 2021 The European Physical Journal A 57 235

    [59]

    Luong D H, Dasgupta M, Hinde D J, du Rietz R, Rafiei R, Lin C J, Evers M, Diaz-Torres A 2013 Phys. Rev. C 88 034609

    [60]

    Jiang C L, Back B B, Rehm K E, Hagino K, Montagnoli G, Stefanini A M 2021 Eur. Phys. J. A 57 235

    [61]

    Werke T A, Mayorov D A, Alfonso M C, Tereshatov E E, Folden C M 2015 Phys. Rev. C 92 054617

    [62]

    Maiti M 2011 Phys. Rev. C 84 044615

    [63]

    Palshetkar C S, Santra S, Chatterjee A, Ramachandran K, Thakur S, Pandit S K, Mahata K, Shrivastava A, Parkar V V, Nanal V 2010 Phys. Rev. C 82 044608

    [64]

    Parkar V V, Palit R, Sharma S K, Naidu B S, Santra S, Joshi P K, Rath P K, Mahata K, Ramachandran K, Trivedi T, Raghav A 2010 Physical Review C 82 054601

    [65]

    Charity R J 2010 Phys. Rev. C 82 014610

    [66]

    Zagrebaev V I, Karpov A V, Denikin A S, Samarin V V 2025. http://nrv.jinr.ru/nrv/

    [67]

    Canto L, Gomes P, Donangelo R, Hussein M S 2006 Physics reports 424 1

    [68]

    Thampi A 2022 Interpretable AI: Building explainable machine learning systems (Simon and Schuster)

  • [1] 李雨婷, 杨炯, 奚晋扬. 机器学习赋能电子结构计算: 进展、挑战与展望. 物理学报, doi: 10.7498/aps.75.20251253
    [2] 刘亚琪, 李志龙, 王永佳, 李庆峰, 马春旺. 基于机器学习的原子核质量表的进一步探究. 物理学报, doi: 10.7498/aps.75.20251526
    [3] 张旭喆, 李佳星, 陈婉玲, 张鸿飞. 机器学习在裂变势垒高度和基态结合能中的应用. 物理学报, doi: 10.7498/aps.75.20251278
    [4] 吴阳海, 杜海龙, 薛雷, 李佳鲜, 薛淼, 郑国尧. 基于机器学习的托卡马克偏滤器靶板热负荷预测研究. 物理学报, doi: 10.7498/aps.74.20250381
    [5] 刘兆圣, 张桥, 宁勇祺, 符秀交, 邹代峰, 王俊年, 赵宇清. 基于机器学习与第一性原理计算的高居里温度Janus预测. 物理学报, doi: 10.7498/aps.74.20251026
    [6] 王越, 叶函函, 熊伟, 王先华, 施海亮, 李超, 程晨, 吴时超. 一种光谱特征增强驱动的机器学习地基红外高光谱云检测方法. 物理学报, doi: 10.7498/aps.74.20250982
    [7] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, doi: 10.7498/aps.74.20241458
    [8] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [9] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [10] 梁晨, 卢少瑜, 黄栋, 陈鑫, 冯岩. 基于机器学习从单颗粒动力学中诊断尘埃等离子体全局性质信息. 物理学报, doi: 10.7498/aps.74.20251129
    [11] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, doi: 10.7498/aps.73.20241278
    [12] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, doi: 10.7498/aps.73.20240747
    [13] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [14] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, doi: 10.7498/aps.72.20230896
    [15] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [16] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [17] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, doi: 10.7498/aps.71.20211632
    [18] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [19] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [20] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
计量
  • 文章访问数:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-30

/

返回文章
返回