-
The micro-newton cusped field Hall thruster is an electric propulsion device that employs microwave-assisted ionization control. It serves as an actuator in drag-free control systems, ensuring control accuracy and stability by providing continuously adjustable thrust over a wide range. However, a mode transition occurring during the regulation process can lead to a sudden change in anode current, degrading control precision and stability. Therefore, it is necessary to investigate the underlying patterns of mode transition. This study examines the variations in internal plasma parameters and discharge characteristics of the thruster before and after microwave mode transition, primarily through probe diagnostics.Experimental results indicate that before the mode transition, the plasma luminous region is primarily concentrated within the electron cyclotron resonance (ECR) area, approximately 1-3 mm upstream of the anode. After the transition, the luminous region moves further upstream, and the plasma density near the anode exceeds the cutoff density, dropping sharply along the axial direction. The fundamental cause of the change in electron heating mechanism is the alteration in the propagation characteristics of fundamental waves due to this plasma density variation.When the plasma density rises to the cutoff density, the R-wave and O-wave, which drive ionization, are rapidly attenuated or reflected. At this point, the R-wave cannot reach the resonance layer, causing the dominant ECR ionization to become ineffective. The ionization mechanism shifts from being dominated by the R-wave and O-wave to being dominated primarily by the O-wave. Consequently, the electron heating mechanism transitions from volume heating to surface wave heating. This research will provide a basis for subsequent optimization of microwave transmission in the thruster and for reducing the threshold at which mode transition occurs.
-
Keywords:
- cusped field hall thruster /
- mode transition /
- probe diagnostics /
- Wave-Plasma Interactions
-
[1] Kawamura S, Nakamura T, Ando M, Seto N, Tsubono K, Numata K, Takahashi R, Nagano S, Ishikawa T, Musha M, Ueda K-i, Sato T, Hosokawa M, Agatsuma K, Akutsu T, Aoyanagi K-s, Arai K, Araya A, Asada H, Aso Y, Chiba T, Ebisuzaki T, Eriguchi Y, Fujimoto M-K, Fukushima M, Futamase T, Ganzu K, Harada T, Hashimoto T, Hayama K, Hikida W, Himemoto Y, Hirabayashi H, Hiramatsu T, Ichiki K, Ikegami T, Inoue K T, Ioka K, Ishidoshiro K, Itoh Y, Kamagasako S, Kanda N, Kawashima N, Kirihara H, Kiuchi K, Kobayashi S, Kohri K, Kojima Y, Kokeyama K, Kozai Y, Kudoh H, Kunimori H, Kuroda K, Maeda K-i, Matsuhara H, Mino Y, Miyakawa O, Miyoki S, Mizusawa H, Morisawa T, Mukohyama S, Naito I, Nakagawa N, Nakamura K, Nakano H, Nakao K, Nishizawa A, Niwa Y, Nozawa C, Ohashi M, Ohishi N, Ohkawa M, Okutomi A, Oohara K, Sago N, Saijo M, Sakagami M, Sakata S, Sasaki M, Sato S, Shibata M, Shinkai H, Somiya K, Sotani H, Sugiyama N, Tagoshi H, Takahashi T, Takahashi H, Takahashi R, Takano T, Tanaka T, Taniguchi K, Taruya A, Tashiro H, Tokunari M, Tsujikawa S, Tsunesada Y, Yamamoto K, Yamazaki T, Yokoyama J i, Yoo C-M, Yoshida S, Yoshino T 2006 Class. Quantum Grav. 23 S125
[2] Cornelisse J W 1996 Class. Quantum Grav. 13 A251
[3] Vetrugno D 2017 International Journal of Modern Physics D 26 1741023
[4] Mueller G 2024 Optics and Photonics for Advanced Dimensional Metrology III Strasbourg, FRANCE, 2024 p27
[5] Sala L 2025 Il Nuovo Cimento C 48 1
[6] Cui K, Liu H, Jiang W, Yu D 2020 Microgravity Sci. Technol. 32 189
[7] Liu H, Zeng M, Niu X, Huang H Y, Yu D R 2021 Appl. Sci.-Basel 11 6549 20
[8] Liu H, Niu X, Zeng M, Wang S S, Cui K, Yu D R 2022 Acta Astronautica 193 496
[9] Chen Y, Wu J, Shen Y, Cao S 2024 Aerospace 11 329
[10] Liu H, Zeng M, Chen Z, Qiao L, Huang H, Yu D 2021 Plasma Sources Sci. Technol. 30 09LT01
[11] Zeng M, Liu H, Chen Z, Huang H, Yu D 2021 Vacuum 192 110486
[12] Zeng M, Liu H, Chen Y, Wu J, Wang S, Huang H, Yu D 2022 Vacuum 205 111486
[13] Zeng M, Liu H, Huang H, Yu D 2023 J. Phys. D: Appl. Phys. 56 215203
[14] Fukuda T, Ueda S, Ohnishi Y, Inomoto M, Abe T 2008 RARIFIED GAS DYNAMICS: Proceedings of the 26th International Symposium on Rarified Gas Dynamics Kyoto (Japan), 2008 p923-928
[15] Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 Journal of Propulsion and Power 30 1383
[16] Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronautica 157 425
[17] Tani Y, Yamashita Y, Tsukizaki R, Nishiyama K, Kuninaka H 2020 Acta Astronautica 176 77
[18] Yamashita Y, Tsukizaki R, Daiki K, Tani Y, Shirakawa R, Hattori K, Nishiyama K 2021 Acta Astronautica 185 179
[19] Yamashita Y, Tsukizaki R, Nishiyama K 2021 Plasma Sources Sci. Technol. 30 095023
[20] Gao Y, Fan W, Hu P, Liu H, Yu D 2020 Plasma Sources Sci. Technol. 29 095021
[21] Yang Y R, Fu S H, Ding Z F 2022 AIP Advances 12 055325
[22] Li J, Fu S, Yang Y, Ding Z 2021 Plasma Sci. Technol. 23 085506
[23] Fu S H, Ding Z F 2021 Physics of Plasmas 28 033510
[24] Fu S H, Ding Z F 2021 Plasma Sources Sci. Technol. 30 125004
[25] Ding Z F, Yang Y R, Fu S H 2023 AIP Advances 13 095007
[26] Fu S H, Tian L C, Ding Z F 2022 Plasma Sources Sci. Technol. 31 025004
[27] Zeng M, Liu H, Huang H, Yu D 2023 Plasma Sources Sci. Technol. 32 095014
[28] Chen F F, Arnush D 2001 Physics of Plasmas 8 5051
[29] Sugai H, Ghanashev I, Mizuno K 2000 Applied Physics Letters 77 3523
[30] Bittencourt J A 2004 Fundamentals of Plasma Physics (New York: Springer New York) pp400-452
[31] Li X, Zeng M, Liu H, Ning Z X, Yu D R 2023 Acta Phys. Sin. 72 225202 11(in Chinese)[李鑫, 曾明, 刘辉, 宁中喜, 于达仁 2023 物理学报 72 199]
Metrics
- Abstract views: 11
- PDF Downloads: 0
- Cited By: 0









下载: