Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and mode conversion application of narrowband hollow-core anti-resonant fiber

Yang Jia-Hao Zhang Ao-Yan Xia Chang-Ming Deng Zhi-Peng Liu Jian-Tao Huang Zhuo-Yuan Kang Jia-Jian Zeng Hao-Ran Jiang Ren-Jie Mo Zhi-Feng Hou Zhi-Yun Zhou Gui-Yao

Citation:

Preparation and mode conversion application of narrowband hollow-core anti-resonant fiber

Yang Jia-Hao, Zhang Ao-Yan, Xia Chang-Ming, Deng Zhi-Peng, Liu Jian-Tao, Huang Zhuo-Yuan, Kang Jia-Jian, Zeng Hao-Ran, Jiang Ren-Jie, Mo Zhi-Feng, Hou Zhi-Yun, Zhou Gui-Yao
PDF
HTML
Get Citation
  • Owing to the unique characteristics of the hollow core fiber(HCF), more and more researchers pay attention to its application. Because the mode field is mainly limited to the core region of the fiber, which results in low non-linearity, ultra-low group velocity dispersion, low temperature sensitivity, and high material damage threshold. Based on the above, the HCF possesses some attractive nonlinear applications such as in transmission of high-power laser beams, sensing, ultra-wide band low-loss transmission, pulse compression and super-continuum generation. Besides, the HCFs can be further divided into the transmitting band-gap photonic crystal fiber(PBG-PCF) and the hollow-core anti-resonant fiber(HC-ARF). Compared with the PBG-PCF, the latter has wide light guiding characteristics caused by leaking modes. According to the research in the recent year, the HC-ARF has gradually approached to the performance of the PBG-PCF in its transmission loss, showing that it has potential applications in communications, sensing, aerospace, high-power laser transmission and other fields in the future. In addition, the HC-ARF with the special light-guiding properties has also become the important photonic device in the fields of fiber filters, mode conversion, etc. In this paper, a hollow-core anti-resonance fiber is studied and its light transmission performance in the spectral range of 500–1500 nm is verified. The optical loss measured at 980 nm wavelength is about 0.32 dB/m. It is found that a 980 nm multi-mode laser beam can be converted into a single-mode one after transmitting through the hollow core fiber we designed.
      Corresponding author: Xia Chang-Ming, xiacmm@126.com
    • Funds: Project supported by the Research and Development Program in Key Area of Guangdong Province, China (Grant No. 2018B010114002), and the Key Research and Development Program of China (Grant No. 2018YFB0407403).
    [1]

    Zenteno L A, Minelly J D, Dejneka M, Crigler S 2000 Adv. Solid State Lasers, Proc. 34 440

    [2]

    Rser F, Jauregui C, Limpert J, Tünnermann A 2008 Opt. Express 16 22

    [3]

    Li P X, Zou S Z, Zhang X X, Bai Z A, Li G 2010 Opt. Laser Technol. 42 8Google Scholar

    [4]

    Li P X, Zhang X X, Liu Z, Chi J J 2011 International Symposium on Photoelectronic Detection and Imaging 2011-Laser Sensing and Imaging and Biological and Medical Applications of Photonics Sensing and Imaging Beijing, Peoples R China, May 24–26, 2011 p81921W

    [5]

    Leich M, Jaeger M, Jager M, Grimm S, Hoh D, Jetschke S, Becker M, Hartung A, Bartelt H 2014 Laser Phys. Lett. 11 4

    [6]

    Ballato J, Aleshkina S S, Likhachev M E, Lipatov, D S 2016 Conference on Fiber Lasers XIII -Technology, Systems, and Applications San Francisco, CA, February 15–18, 2016 p97281C

    [7]

    杜赫庭, 刘爱民, 曹涧秋, 潘志勇, 黄值河, 王小林, 许晓军, 陈金宝 2019 强激光与粒子束 268 10

    Du H T, Liu A M, Cao J Q, Pan Z Y, Huang Z H, Wang X L, Xu X J, Chen J B 2019 High Power Laser Part. Beams 268 10

    [8]

    Paul B K, Ahmed K, Vigneswaran D, Sen S, Islam M S 2019 Opt. Quantum Electron. 51 7Google Scholar

    [9]

    Qin J Y, Zhu B, Du Y, Han Z H 2019 Opt. Fiber Technol. 52 101990Google Scholar

    [10]

    蔡伟, 郝文慧, 王舰洋, 周彦果, 刘轶铭 2021 真空电子技术 3 8

    Cai W, He W H, Wang J Y, Zhou Y G, Liu Y M 2021 Vac. Electron. 3 8

    [11]

    Stefani A, Fleming S C, Kuhlmey B T 2018 APL Photonics 3 5

    [12]

    Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 10

    [13]

    Huang X, Yoo S, Yong K T 2017 Sci. Rep. 7 1Google Scholar

    [14]

    Kosolapov A F, Alagashev G K, Kolyadin A N, Pryamikov A D, Biriukov A S, Bufetov I A, Dianov E M 2016 Quantum Electron. 46 3

    [15]

    Bradley T D, Jasion G T, Hayes J R, Chen Y, Hooper L, Sakr H, Alonso M, Taranta A, Saljoghei A, Mulvad H C, Fake M, Davidson I A K, Wheeler N V, Fokoua E N, Wei Wang, Sandoghchi S R, Richardson D J, Poletti F 2019 45th European Conference on Optical Communication (ECOC 2019) Dublin, Ireland, Sept 22–26, 2019 p4

    [16]

    Gao S F, Wang Y Y, Ding W, Jiang D L, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 1Google Scholar

    [17]

    Yu F, Song P, Wu D K, Birks T, Bird D, Knight J 2019 APL Photonics 4 8

    [18]

    Jasion G T, Bradley T D, Harrington K, et al. 2020 Optical Fiber Communications Conference and Exposition (OFC) San Diego, CA, Mar 08–12, 2020

    [19]

    Tamura Y, Sakuma H, Morita K, Suzuki M, Yamamoto, Y, Shimada K, Honma Y, Sohma K, Fujii T, Hasegawa T 2018 J. Lightwave Technol. 36 1Google Scholar

    [20]

    Markos C, Nielsen K, Bang O 2015 J. Opt. 17 10

    [21]

    Markos C, Travers J C, Abdolvand A, Eggleton B J 2017 Rev. Mod. Phys. 89 4

    [22]

    Fini J M, Nicholson J W, Mangan B, Meng L L, Windeler R S, Monberg E M, Desantolo A, Dimarcello F V, Mukasa K 2014 Nat. Commun. 5 5085Google Scholar

    [23]

    Michieletto M, Lyngso J K, Jakobsen C, Laegsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7

    [24]

    Wei C L, Kuis R A, Chenard F, Menyuk C R, Hu J 2015 Opt. Express 23 12Google Scholar

    [25]

    Uebel P, Gunendi M, Frosz M H, Ahmed G, Edavalath N N, Menard J M, Russell P S J 2016 Opt. Lett. 41 9Google Scholar

    [26]

    Kumar A, Saini T S, Naik K D, Sinha R K 2016 Appl. Opt. 55 19

    [27]

    Kabir S, Razzak S M A 2018 Optik 162 206Google Scholar

    [28]

    Kabir S, Razzak S M A 2019 Photonics Nanostruct. Fundam. Appl. 30 1

    [29]

    COMSOL Multiphysics®, Consultants C http: //https://www.comsol.com/paper/research-of-dispersion-characters-in-hexagonal-photonic-crystal-fiber-based-on-a-20011 [2014]

    [30]

    贺平, 徐敏 1999 北京工业大学学报 4 1

    He P, Xu M 1999 J. Beijing Univ. Technol. 4 1

  • 图 1  空芯反谐振光纤端面图[20]

    Figure 1.  Cross-section of hollow core anti-resonant fiber[20].

    图 2  空芯反谐振光纤导光原理图[21] (a)反谐振; (b)谐振

    Figure 2.  Light guiding principles of hollow core antiresonant fiber[21]: (a) Antiresonant; (b) resonant.

    图 3  光纤设计结构与模场分析图 (a) 光纤结构设计图; (b) 光纤模场分析图

    Figure 3.  Fiber design structure and mode field analysis: (a) Optical fiber structure design drawing; (b) optical fiber mode field analysis diagram.

    图 4  光纤x轴和y轴方向弯曲时的模场分布图 (a) 光纤沿x轴方向弯曲模场分布图; (b) 光纤沿y轴方向弯曲模场分布图

    Figure 4.  Mode field distribution of optical fiber bending along x- and y- axis: (a) The distribution of bending mode field of optical fiber along the x-axis; (b) the distribution of bending mode field of optical fiber along the y-axis.

    图 5  光纤沿x轴和y轴方向弯曲损耗图 (a) 光纤沿x轴方向弯曲损耗图; (b) 光纤沿y轴方向弯曲损耗图

    Figure 5.  Bending loss diagram of optical fiber along x- and y-axis: (a) Fiber bending loss along the x-axis; (b) fiber bending loss along the y-axis.

    图 6  光纤有效折射率

    Figure 6.  Effective refractive index of optical fiber.

    图 7  光纤色散图

    Figure 7.  Dispersion diagram of optical fiber.

    图 8  空芯反谐振光纤SEM端面图

    Figure 8.  SEM cross-section of the hollow core anti-resonance fiber.

    图 9  空芯反谐振光纤传输谱图

    Figure 9.  Transmission spectrum of hollow core anti-resonance fiber.

    图 10  空芯反谐振光纤的传输损耗图

    Figure 10.  Transmission loss diagram of hollow core anti-resonance fiber.

    图 11  980 nm多模光纤激光器转单模激光装置示意图

    Figure 11.  Schematic diagram of 980 nm multi-mode fiber laser to single-mode laser device.

    图 12  空芯反谐振光纤多模与单模转化效率图及980 nm单模激光模式 (a) 光纤多模转单模效率图; (b), (c) 经锥形光纤模式多模激光模式图; (d), (e) 经空芯反谐振光纤激光模式图

    Figure 12.  Multi-mode and single-mode conversion efficiency of hollow core anti-resonance fiber: (a) Efficiency of fiber from multi-mode to single-mode; (b), (c) multi-mode laser modes after tapered fiber mode; (d), (e) laser patterns of hollow core anti-resonant fiber.

    表 1  空芯反谐振光纤直径, 包层壁厚、包层圆心距和反谐振窗口参数

    Table 1.  Hollow core anti-resonant fiber diameter, cladding wall thickness, cladding center distance and anti-resonance window parameters.

    纤芯直径包层壁厚包层圆心距反谐振窗口
    D/μmt/nmΛ/μm$ {\lambda }_{\mathrm{\gamma }} $/nm(实际测量)
    (t = 500 nm)
    $ {\lambda }_{\propto } $/nm(理论设计)
    (t = 466 nm)
    3050021.41024 (m = 1)
    582 (m = 2)
    395 (m = 3)
    296 (m = 4)
    979 (m = 1)
    552 (m = 2)
    368 (m = 3)
    276 (m = 4)
    DownLoad: CSV

    表 2  未经过光纤传输后的光束质量测量参数

    Table 2.  Measurement parameters of beam quality without optical fiber transmission.

    参数
    测量组
    ƒ = 0.3ƒ = 0.4ƒ = 0.45ƒ = 0.5ƒ = 0.6s = 0.7
    ƒ/mm0.30.40.450.50.60.7
    ω/mm1.10.950.920.780.390.29
    DownLoad: CSV

    表 3  经过光纤传输后的光束质量测量参数

    Table 3.  Measurement parameters of beam quality through by optical fiber transmission.

    参数
    测量组
    ƒ = 1.2ƒ = 1.3ƒ = 1.5ƒ = 1.6ƒ = 1.8s = 2.3
    ƒ/mm1.21.31.51.61.82.3
    ω/mm1.090.960.90.730.630.4
    DownLoad: CSV
  • [1]

    Zenteno L A, Minelly J D, Dejneka M, Crigler S 2000 Adv. Solid State Lasers, Proc. 34 440

    [2]

    Rser F, Jauregui C, Limpert J, Tünnermann A 2008 Opt. Express 16 22

    [3]

    Li P X, Zou S Z, Zhang X X, Bai Z A, Li G 2010 Opt. Laser Technol. 42 8Google Scholar

    [4]

    Li P X, Zhang X X, Liu Z, Chi J J 2011 International Symposium on Photoelectronic Detection and Imaging 2011-Laser Sensing and Imaging and Biological and Medical Applications of Photonics Sensing and Imaging Beijing, Peoples R China, May 24–26, 2011 p81921W

    [5]

    Leich M, Jaeger M, Jager M, Grimm S, Hoh D, Jetschke S, Becker M, Hartung A, Bartelt H 2014 Laser Phys. Lett. 11 4

    [6]

    Ballato J, Aleshkina S S, Likhachev M E, Lipatov, D S 2016 Conference on Fiber Lasers XIII -Technology, Systems, and Applications San Francisco, CA, February 15–18, 2016 p97281C

    [7]

    杜赫庭, 刘爱民, 曹涧秋, 潘志勇, 黄值河, 王小林, 许晓军, 陈金宝 2019 强激光与粒子束 268 10

    Du H T, Liu A M, Cao J Q, Pan Z Y, Huang Z H, Wang X L, Xu X J, Chen J B 2019 High Power Laser Part. Beams 268 10

    [8]

    Paul B K, Ahmed K, Vigneswaran D, Sen S, Islam M S 2019 Opt. Quantum Electron. 51 7Google Scholar

    [9]

    Qin J Y, Zhu B, Du Y, Han Z H 2019 Opt. Fiber Technol. 52 101990Google Scholar

    [10]

    蔡伟, 郝文慧, 王舰洋, 周彦果, 刘轶铭 2021 真空电子技术 3 8

    Cai W, He W H, Wang J Y, Zhou Y G, Liu Y M 2021 Vac. Electron. 3 8

    [11]

    Stefani A, Fleming S C, Kuhlmey B T 2018 APL Photonics 3 5

    [12]

    Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 10

    [13]

    Huang X, Yoo S, Yong K T 2017 Sci. Rep. 7 1Google Scholar

    [14]

    Kosolapov A F, Alagashev G K, Kolyadin A N, Pryamikov A D, Biriukov A S, Bufetov I A, Dianov E M 2016 Quantum Electron. 46 3

    [15]

    Bradley T D, Jasion G T, Hayes J R, Chen Y, Hooper L, Sakr H, Alonso M, Taranta A, Saljoghei A, Mulvad H C, Fake M, Davidson I A K, Wheeler N V, Fokoua E N, Wei Wang, Sandoghchi S R, Richardson D J, Poletti F 2019 45th European Conference on Optical Communication (ECOC 2019) Dublin, Ireland, Sept 22–26, 2019 p4

    [16]

    Gao S F, Wang Y Y, Ding W, Jiang D L, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 1Google Scholar

    [17]

    Yu F, Song P, Wu D K, Birks T, Bird D, Knight J 2019 APL Photonics 4 8

    [18]

    Jasion G T, Bradley T D, Harrington K, et al. 2020 Optical Fiber Communications Conference and Exposition (OFC) San Diego, CA, Mar 08–12, 2020

    [19]

    Tamura Y, Sakuma H, Morita K, Suzuki M, Yamamoto, Y, Shimada K, Honma Y, Sohma K, Fujii T, Hasegawa T 2018 J. Lightwave Technol. 36 1Google Scholar

    [20]

    Markos C, Nielsen K, Bang O 2015 J. Opt. 17 10

    [21]

    Markos C, Travers J C, Abdolvand A, Eggleton B J 2017 Rev. Mod. Phys. 89 4

    [22]

    Fini J M, Nicholson J W, Mangan B, Meng L L, Windeler R S, Monberg E M, Desantolo A, Dimarcello F V, Mukasa K 2014 Nat. Commun. 5 5085Google Scholar

    [23]

    Michieletto M, Lyngso J K, Jakobsen C, Laegsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7

    [24]

    Wei C L, Kuis R A, Chenard F, Menyuk C R, Hu J 2015 Opt. Express 23 12Google Scholar

    [25]

    Uebel P, Gunendi M, Frosz M H, Ahmed G, Edavalath N N, Menard J M, Russell P S J 2016 Opt. Lett. 41 9Google Scholar

    [26]

    Kumar A, Saini T S, Naik K D, Sinha R K 2016 Appl. Opt. 55 19

    [27]

    Kabir S, Razzak S M A 2018 Optik 162 206Google Scholar

    [28]

    Kabir S, Razzak S M A 2019 Photonics Nanostruct. Fundam. Appl. 30 1

    [29]

    COMSOL Multiphysics®, Consultants C http: //https://www.comsol.com/paper/research-of-dispersion-characters-in-hexagonal-photonic-crystal-fiber-based-on-a-20011 [2014]

    [30]

    贺平, 徐敏 1999 北京工业大学学报 4 1

    He P, Xu M 1999 J. Beijing Univ. Technol. 4 1

  • [1] Laing Yuan-yi, Fang Zhen-song, He Ya-feng, Li Qing, He Shou-jie. Experiment and simulation on the spatiotemporal microscopic dynamics of self-pulsing discharge in micro-hollow cathode. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241586
    [2] Lü Yu-Xi, Wang Chen, Duan Tian-Qi, Zhao Tong, Chang Peng-Fa, Wang An-Bang. Asymmetric transmission of cascaded acousto-optic device and whispering gallery mode microcavity. Acta Physica Sinica, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [3] Yang Jia-Hao,  Zhang Ao-Yan,  Xia Chang-Ming,  Deng Zhi-Peng,  Liu Jian-Tao,  Huang Zhuo-Yuan,  Kang Jia-Jian,  Zeng Hao-Ran,  Jiang Ren-Jie,  Mo Zhi-Feng,  Hou Zhi-Yun,  Zhou Gui-Yao. Research on Preparation and Mode Conversion Application of Narrowband Hollow-core Anti-resonant Fiber. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212194
    [4] Study on unidirectional transmission of funnel-shaped waveguide with complete bandgap. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211299
    [5] Chen Fa-Xi, Zhao Kan, Li Bo, Liu Bo, Guo Xin-Xing, Kong Wei-Cheng, Chen Guo-Chao, Guo Bao-Long, Liu Tao, Zhang Shou-Gang. High-precision dual-wavelength time transfer via1085-km telecommunication fiber link. Acta Physica Sinica, 2021, 70(7): 070702. doi: 10.7498/aps.70.20201277
    [6] Ding Zi-Ping, Liao Jian-Fei, Zeng Ze-Kai. A new type of ultra-broadband microstructured fiber sensor based on surface plasmon resonance. Acta Physica Sinica, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [7] Huang Jun-Chao, Wang Ling-Ke, Duan Yi-Fei, Huang Ya-Feng, Liu Liang, Li Tang. Experimental study on 1/f intrinsic thermal noise in optical fibers. Acta Physica Sinica, 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [8] Ying Kang, Gui You-Zhen, Sun Yan-Guang, Cheng Nan, Xiong Xiao-Feng, Wang Jia-Liang, Yang Fei, Cai Hai-Wen. Key technology of high-precision time frequency transfer via 200 km desert urban fiber link. Acta Physica Sinica, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [9] Ding Wei, Wang Ying-Ying, Gao Shou-Fei, Hong Yi-Feng, Wang Pu. Theoretical and experimental investigation of light guidance in hollow-core anti-resonant fiber. Acta Physica Sinica, 2018, 67(12): 124201. doi: 10.7498/aps.67.20180724
    [10] Chen Fa-Xi, Zhao Kan, Zhou Xu, Liu Tao, Zhang Shou-Gang. High-precision long-haul fiber-optic time transfer between multi stations. Acta Physica Sinica, 2017, 66(20): 200701. doi: 10.7498/aps.66.200701
    [11] Rao Yun-Jiang. Recent progress in ultra-long distributed fiber-optic sensing. Acta Physica Sinica, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [12] Xiao Ya-Ling, Liu Yan-Ge, Wang Zhi, Liu Xiao-Qi, Luo Ming-Ming. Design and experimental study of mode selective all-fiber fused mode coupler based on few mode fiber. Acta Physica Sinica, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [13] Hou Jian-Ping, Zhao Chen-Yang, Yang Nan, Hao Jian-Ping, Zhao Jian-Lin. Measurement of end-face reflection property of micro-nano fibers. Acta Physica Sinica, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [14] Zhou Rui, Zhang Jing, Hu Man-Li, Feng Zhong-Yao, Gao Hong, Yang Yang, Zhang Jing-Hua, Qiao Xue-Guang. A vibration detection system based on two-stage polarization maintaining fiber Sagnac loop fiber laser. Acta Physica Sinica, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [15] Qiao Xue-Guang, Ding Feng, Jia Zhen-An, Fu Hai-Wei, Ying Xu-Dong, Zhou Rui, Song Juan. High-accuracy quasi-distributed optical fiber Bragg gratingseismic demodulation system. Acta Physica Sinica, 2011, 60(7): 074221. doi: 10.7498/aps.60.074221
    [16] Wang Jing, Zhang Chen-Fang, Kang Ze-Xin, Sun Jiang, Zheng Si-Wen, Lin Zhen, Wang Chun-Can, Jian Shui-Sheng. The transmission characteristic of the multi-polarization controlled fiber loop mirror. Acta Physica Sinica, 2011, 60(12): 124215. doi: 10.7498/aps.60.124215
    [17] Zhang Peng, Zhao Jian-Lin, Yang De-Xing, Wang Mei-Rong, Sun Yi-Dong. Analyses of guiding properties of light-induced planar waveguides in LiNbO3:Fe crystals. Acta Physica Sinica, 2004, 53(10): 3369-3374. doi: 10.7498/aps.53.3369
    [18] Yu Tian, Wang Fu-Yun. . Acta Physica Sinica, 2002, 51(9): 1907-1912. doi: 10.7498/aps.51.1907
    [19] YU SHOU-MIAN, YU TIAN. COVARIANT FORM OF SOMMERFELD'S FORMULA FOR SPHERICAL WAVE AND APPLICATION IN FIBER OPTICS. Acta Physica Sinica, 2001, 50(6): 1097-1102. doi: 10.7498/aps.50.1097
    [20] YU SHOU-MIAN, YU TIAN. ELECTROMAGNETIC ADJOINT TRANSFORMATION AND MODE ANALYSIS FOR GUIDED WAVES IN AN OPTICAL FIBER. Acta Physica Sinica, 2001, 50(11): 2179-2184. doi: 10.7498/aps.50.2179
Metrics
  • Abstract views:  6064
  • PDF Downloads:  166
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2021
  • Accepted Date:  17 March 2022
  • Available Online:  28 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回