-
Generally, when individuals obtain information about epidemic risks, they will arouse their awareness of self-protection and thus take various effective self-protection measures independently. However, there is often significant different response for different individual. To explore more comprehensively the impact of differences in individuals' ability to identify or accept external information on awareness diffusion, as well as on epidemic spreading, this paper constructs an awareness-epidemic double-layer network with higher-order interactions, innovatively introduces an individual heterogeneity factor, and proposes the UAU-SIS ( Unaware- Aware- Unaware- Susceptible- Infected- Susceptible ) awareness-epidemic spreading model. The heterogeneity in this model is mainly reflected by individuals' first-order degree, second-order degree, coordination factor, and response factor. Based on the Microscopic Markov Chain Approach (Microscopic Markov Chain Approach, MMCA) and the proposed UAU-SIS model, this paper conducts a theoretical analysis of the coevolution of awareness and epidemic, and theoretically deduces the mathematical expression of the epidemic threshold. Monte Carlo( Monte Carlo, MC) numerical simulations verify the feasibility and effectiveness of the MMCA theoretical analysis. Meanwhile, numerous numerical simulations have explored the impact of individual heterogeneity on awareness diffusion, epidemic spreading, and epidemic threshold. The results show that reasonable regulation of the first-order average degree and second-order average degree of the awareness layer can effectively promote awareness diffusion and improve the overall effect of epidemic prevention and control. In addition, reducing the coordination factor or increasing the response factor can effectively promote awareness diffusion, raise the epidemic threshold, and thus block epidemic spreading.
-
Keywords:
- Higher-order double-layer network /
- Awareness-epidemic spreading /
- Individual heterogeneity /
- Epidemic threshold /
- MMCA
-
[1] Morens D M, Fauci A S 2007 J. Infect. Dis. 195 1018
[2] Liu W B 2013 Adv. Mater. Res. 2480 776
[3] Rahman M A, Zaman N, Asyhari A T, Al-Turjman F, Bhuiyan M Z A, Zolkipli M F 2020 Sustain. Cities Soc. 62 102372
[4] Kermack W O, McKendrick A G 1927 Proc. R. Soc. Lond. A 115 700
[5] Kermack W O, McKendrick A G 1932 Proc. R. Soc. Lond. A 138 55
[6] Watts D J, Strogatz S H 1998 Nature 393 440
[7] Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200
[8] Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 925
[9] Guo Q T, Jiang X, Lei Y J, Li M, Ma Y F, Zheng Z M 2015 Phys. Rev. E 91 012822
[10] Yin Q, Wang Z S, Xia C Y, Bauch C T 2022 Commun. Nonlinear Sci. Numer. Simul. 109 106312
[11] Funk S, Gilad E, Watkins C, Jansen V A A 2009 Proc. Natl. Acad. Sci. 106 6872
[12] Granell C, Gómez S, Arenas A 2013 Phys. Rev. Lett. 111 128701
[13] Velásquez-Rojas F, Ventura P C, Connaughton C, Moreno Y, Rodrigues F A, Vazquez F 2020 Phys. Rev. E 102 022312
[14] Guo Y F, Tu L L, Shen H, Chai L 2022 Phys. Rev. E 106 034307
[15] Yang H, Tang M, Cai S M, Zhou T 2016 Acta Phys. Sin. 65 058901(in Chinese) [杨慧,唐明,蔡世民,周涛2016物理学报65 058901]
[16] Pan Y H, Yan Z J 2018 Chaos 28 063123
[17] Chen P Y, Guo X D, Jiao Z T, Liang S H, Li L F, Yan J, Huang Y D, Liu Y, Fan W H 2022 Front. Phys. 10 964883
[18] Ugander J, Backstrom L, Marlow C, Kleinberg J 2012 Proc. Natl. Acad. Sci. 109 5962
[19] Liu B, Zeng Y J, Yang R M, Lv L Y 2024 Acta Phys. Sin. 73 128901(in Chinese) [刘波,曾钰洁,杨荣湄,吕琳媛2024物理学报73 128901]
[20] Iacopini I, Petri G, Barrat A, Latora V 2019 Nat. Commun. 10 2485
[21] Landry N W, Restrepo J G 2020 Chaos 30 103117
[22] Wang D, Zhao Y, Luo J F, Leng H 2021 Chaos 31 053112
[23] Barabási A L, Albert R 1999 Science 286 509
[24] Wang H, Zhang H F, Zhu P C, Ma C 2022 Chaos 32 083110
Metrics
- Abstract views: 25
- PDF Downloads: 0
- Cited By: 0









下载: