Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-Plane Light Conversion Coherent Beam Combining for Optical Field Manipulation

Zhou Hongbing Tao Rumao Yan Yuefang Liu Chenxu Feng Xi Qin Yu Li Min Xu Dangpeng Lin Honghuan Peng Zhitao Wang Jianjun Yan Lixin Jing Feng

Citation:

Multi-Plane Light Conversion Coherent Beam Combining for Optical Field Manipulation

Zhou Hongbing, Tao Rumao, Yan Yuefang, Liu Chenxu, Feng Xi, Qin Yu, Li Min, Xu Dangpeng, Lin Honghuan, Peng Zhitao, Wang Jianjun, Yan Lixin, Jing Feng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Multi-Plane Light Conversion (MPLC) coherent beam combining (CBC) presents a promising approach for flexible optical field manipulation, overcoming the limitations of low energy utilization and poor beam quality in traditional CBC methods. However, its potential for generating diverse structured beams and the underlying design principles remain underexplored. In this work, theoretical model of MPLC-based CBC system was constructed to perform numerical investigation on the property and capability of MPLC optical field manipulation. Localized phase coding and vortex phase coding methods were proposed for mode mapping design to enhance the match between input and output modes. By employing multi-dimensional evaluation metrics including conversion efficiency (η), side-lobe suppression ratio (SSR), and phase matching degree (PMD), the performance of different coding strategies was systematically compared. The results manifested that while random coding yielded an average efficiency of 92% for five multi-focus beams, both localized and vortex coding significantly enhanced output quality, achieving a superior average efficiency of 97.1%. Based on the proposed encoding methods, MPLC successfully produced 5 Laguerre-Gaussian (LG) beams, 5 geometric shapes, and 5 letter patterns with remarkably high average efficiencies, reaching 97.4%, 99.2%, and 96.5%, respectively, accompanied by high SSR (>14 dB) and PMD (>96%). Furthermore, a strategy for arbitrary beam shaping by decomposing the target field into a linear combination of orthogonal modes was proposed and confirmed using a 21-mode MPLC. Simultaneously, its flexibility and the consequential requirement for strong amplitude modulation on the laser array were discussed. Finally, the relationship between the number of supported modes and the required number of phase plates was also analyzed, illustrating that maintaining high efficiency for a larger number of modes necessitates a significant increase in the number of phase plates. This study effectively generated a wide range of structured beams with minimal stray light and high energy utilization, demonstrating that MPLC-based CBC is a powerful and versatile technique for high-efficiency, high-quality optical field manipulation. Future work should focus on optimizing the design to reduce the requisite number of planes, paving the way for practical applications in high-power laser processing, optical communications, and quantum optics.
  • [1]

    Forbes A, Oliveira M D, Dennis M R 2021 Nat. Photonics 15 253

    [2]

    He C, Shen Y J, Forbes A 2022 Light Sci. Appl. 11 205

    [3]

    Barati Sedeh H, Litchinitser N M 2023 Nanophotonics 12 2687

    [4]

    Yang Y Q, Forbes A, Cao L C 2023 Opto-Electronic Sci. 2 230026

    [5]

    Zeng Y X, Sha X B, Zhang C, Zhang Y, Deng H C, Lu H P, Qu G Y, Xiao S M, Yu S H, Kivshar Y, Song Q H 2025 Nature 643 1240

    [6]

    Li Z C, Liu W W, Zhang Y B, Cheng H, Zhang S, Chen S Q 2024 PhotoniX 5 30

    [7]

    Zhang Z, Wang Y, Zhang L, Yang H, Zhao S, Pan X, He W, Ma Y, Kong L, Xiao L, Zhao C 2025 Nat. Commun. 16 7857

    [8]

    Zhou S, Li L, Gao L, Zhou Z, Yang J, Zhang S, Wang T, Gao C, Fu S 2025 Light Sci. Appl. 14 167

    [9]

    Lin D, Carpenter J, Feng Y T, Jain S, Jung Y M, Feng Y J, Zervas M N, Richardson D J 2020 Nat. Commun. 11 3986

    [10]

    Eyal S, Yaniv V, Benayahu U Proceedings of Fiber Lasers XVII: Technology and Systems California, United States, February 1-6, 2020 p1126021

    [11]

    Prossotowicz M, Flamm D, Heimes A, Jansen F, Otto H-J, Budnicki A, Killi A, Morgner U 2021 Opt. Lett. 46 1660

    [12]

    Zhou H B, Yan Y F, Liu C X, Feng X, Qin Y, Li M, Tao R M, Lin H H, Peng Z T, Wang J J, Yan L X, Jing F 2025 High Power Laser Sci. Eng. (accepted)

    [13]

    Zhou H B, Zhang H Y, Li M, Feng X, Xie L H, Liu Y, Chu Q H, Yan Y F, Tao R M, Lin H H, Wang J J, Yan L X, Jing F 2024 High Power Laser Part. Beams 36 061001 (in Chinese) [周宏冰, 张昊宇, 李敏, 冯曦, 谢亮华, 刘玙, 楚秋慧, 闫玥芳, 陶汝茂, 林宏奂, 王建军, 颜立新, 景峰 2024 强激光与粒子束 36 061001]

    [14]

    Zhou P, Chang H X, Su R T, Wang X L, Ma Y X 2024 Chin. J. Lasers 51 0121002 (in Chinese) [周朴, 常洪祥, 粟荣涛, 王小林, 马阎星 2024 中国激光 51 0121002]

    [15]

    Li C, Zhang J Y, Ren B, Chang H X, Wang T, Guo K, Zhang Y Q, Su R T, Leng J Y, Xu J M, Wu J, Zhou P 2024 Chin. J. Lasers 51 1901006 (in Chinese) [李灿, 张嘉怡, 任博, 常洪祥, 王涛, 郭琨, 张雨秋, 粟荣涛, 冷进勇, 许将明, 吴坚, 周朴 2024 中国激光 51 1901006]

    [16]

    Wu J, Ma Y X, Ma P F, Su R T, Li C, Jiang M, Chang H X, Ren S, Chang Q, Wang T, Ren B, Zhou P 2021 Infrared Laser Eng. 50 20210621 (in Chinese) [吴坚, 马阎星, 马鹏飞, 粟荣涛, 李灿, 姜曼, 常洪祥, 任帅, 常琦, 王涛, 任博, 周朴 2021 红外与激光工程 50 20210621]

    [17]

    Karr T, Trebes J 2024 Phys. Today 77 32

    [18]

    Chang Q, Gao Z Q, Deng Y, Ren S, Ma P F, Su R T, Ma Y X, Zhou P 2023 Chin. J. Lasers 50 0616001 (in Chinese) [常琦, 高志强, 邓宇, 任帅, 马鹏飞, 粟荣涛, 马阎星, 周朴 2023 中国激光 50 0616001]

    [19]

    Li H K, Xie L H, Zhang C, Tao R M, Shu Q, Li M, Shen B J, Feng X, Xu L X, Wang J J 2023 Front. Phys. 11 1195655

    [20]

    Zhi D, Hou T Y, Ma P F, Ma Y X, Zhou P, Tao R M, Wang X L, Si L 2019 High Power Laser Sci. Eng. 7 e33

    [21]

    Long J H, Jin K K, Chen Q, Chang H X, Chang Q, Ma Y X, Wu J, Su R T, Ma P F, Zhou P 2023 Opt. Lett. 48 5021

    [22]

    Liu S X, Liu H, Qi X P, Peng W J, Feng Y J, Chen L, Li Z D, Sun Y H, Ma Y, Zhao Z G, Gao Q S, Liu Z J, Tang C 2023 Opt. Lett. 48 5121

    [23]

    Shu B W, Zhang Y Q, Nie Z Q, Tang S Q, Leng J Y, Zhou P 2025 Appl. Phys. Lett. 126 221101

    [24]

    Liu H Y, Li J, Jin K, Shu B W, Zhang Y Q, Nie Z Q, Wu J, Leng J Y, Zhou P 2025 Optica 12 1280

    [25]

    Asaf N, Nina A, Eyal S Proceedings of Fiber Lasers XIX: Technology and Systems California, United States, January 22 - February 28, 2022 p119810B

    [26]

    Weber R, Wagner J, Peter A, Hagenlocher C, Spira A, Urbach B, Shekel E, Vidne Y 2025 J. Manuf. Mater. Proc. 9 85

    [27]

    Zhang W, Jin K, Su R, Chang H, Ma Y, Jiang Z, Zhou P 2025 Opt. Express 33 35374

    [28]

    Jin K K, Chang H X, Long J H, Su R T, Zhang Y Q, Zhang J Y, Ma Y X, Zhou P 2024 Appl. Phys. Lett. 125 021108

    [29]

    Fsaifes I, Daniault L, Bellanger S, Veinhard M, Bourderionnet J, Larat C, Lallier E, Durand E, Brignon A, Chanteloup J C 2020 Opt. Express 28 20152

    [30]

    Klenke A, Jauregui C, Steinkopff A, Aleshire C, Limpert J 2022 Prog. Quantum. Electron 84 100412

    [31]

    Billaud A, Gomez F, Allioux D, Laurenchet N, Jian P, Pinel O, Labroille G Proceedings of 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS) Oregon, United States, October 14-16, 2019

    [32]

    Morizur J-F, Nicholls L, Jian P, Armstrong S, Treps N, Hage B, Hsu M, Bowen W, Janousek J, Bachor H-A 2010 J. Opt. Soc. Am. A 27 2524

    [33]

    Limery A, Lombard L, Bourdon P, Billaud A, Pinel O, Labroille G, Guennic T L, Jian P Proceedings of Technologies for Optical Countermeasures XVIII and High-Power Lasers: Technology and Systems, Platforms, Effects V Online Only, September 3-18, 2021 p118670H

    [34]

    Demur R, Leviandier L, Turpin E, Bourderionnet J, Lallier E 2023 Opt. Express 31 32105

    [35]

    Garcia L, Pinel O, Jian P, Barré N, Jaffrès L, Morizur J F, Labroille G Proceedings of High-Power Laser Materials Processing - Applications, Diagnostics, and Systems VI California, United States, January 31 - February 2, 2017 p1009705

    [36]

    CANUNDA-USP PureBeam https://www.cailabs.com/[2022-3]

    [37]

    Zhou H B, Tao R M, Feng X, Qin Y, Yan Y F, Liu C X, Li M, Lin H H, Peng Z T, Wang J J, Yan L X, Jing F 2025 Chin. J. Lasers 52 1701007 (in Chinese) [周宏冰, 陶汝茂, 冯曦, 秦瑀, 闫玥芳, 刘辰旭, 李敏, 林宏奂, 彭志涛, 王建军, 颜立新, 景峰 2025 中国激光 52 1701007]

    [38]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, Rodriguez A W 2018 Nat. Photonics 12 659

    [39]

    Sakamaki Y, Saida T, Hashimoto T, Takahashi H 2007 J. Lightwave Technol. 25 3511

    [40]

    Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G, Schmidt-Kaler F 2016 Nat. Commun. 7 12998

    [41]

    Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F 2017 Science 358 896

    [42]

    Alonso M A, Dennis M R 2017 Optica 4 476

    [43]

    Lee J C T, Alexander S J, Kevan S D, Roy S, McMorran B J 2019 Nat. Photonics 13 205

  • [1] Wang Jing-Shang, Zhang Yao, Wang Jun-Li, Wei Zhi-Yi, Chang Guo-Qing. Recent progress of coherent combining technology in femtosecond fiber lasers. Acta Physica Sinica, doi: 10.7498/aps.70.20201683
    [2] Zhong Zhe-Qiang, Mu Jie, Wang Xiao, Zhang Bin. Analysis of coherent combination characteristics of beam array via tight focusing. Acta Physica Sinica, doi: 10.7498/aps.69.20200034
    [3] Peng Yi-Ming, Xue Yu, Xiao Guang-Zong, Yu Tao, Xie Wen-Ke, Xia Hui, Liu Shuang, Chen Xin, Chen Fang-Lin, Sun Xue-Cheng. Spiral spectrum analysis and application ofcoherent synthetic vortex beams. Acta Physica Sinica, doi: 10.7498/aps.68.20190880
    [4] Huang Pei,  Fang Shao-Bo,  Huang Hang-Dong,  Hou Xun,  Wei Zhi-Yi. Coherent synthesis of ultrashort pulses based on balanced optical cross-correlator. Acta Physica Sinica, doi: 10.7498/aps.67.20181851
    [5] Tan Yi, Li Xin-Yang. Influence of filling factor on far-field intensity distribution in coherent beam combination. Acta Physica Sinica, doi: 10.7498/aps.63.094202
    [6] Geng Chao, Luo Wen, Tan Yi, Liu Hong-Mei, Mu Jin-Bo, Li Xin-Yang. Experimental study on coherent beam combination of fiber amplifiers using adaptive power-in-the-bucket cost function. Acta Physica Sinica, doi: 10.7498/aps.62.224202
    [7] Zhou Ze-Min, Zeng Xin-Wu, Gong Chang-Chao, Zhao Yun, Tian Zhang-Fu. Experimental investigations on coherent combination of high-power and high-intensity air-modulated speakers. Acta Physica Sinica, doi: 10.7498/aps.62.134305
    [8] Zhu Ya-Dong, Xiao Hu, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu. Coherent beam combination of two high power double clad fiber lasers by using an all-fiber Michelson cavity. Acta Physica Sinica, doi: 10.7498/aps.61.054210
    [9] Li Jian-Long, Feng Guo-Ying, Zhou Shou-Huan, Li Wei. Study of the M2 factor for the single-aperture coherent laser beam synthesis system. Acta Physica Sinica, doi: 10.7498/aps.61.094206
    [10] Geng Chao, Li Xin-Yang, Zhang Xiao-Jun, Rao Chang-Hui. Experimental investigation on coherent beam combination of a three-element fiber array based on target-in-the-loop technique. Acta Physica Sinica, doi: 10.7498/aps.61.034204
    [11] Lian Tian-Hong, Wang Shi-Yu, Guo Zhen, Li Bing-Bin, Cai De-Fang, Wen Jian-Guo. A coherently combined laser beam for lidar. Acta Physica Sinica, doi: 10.7498/aps.60.124208
    [12] Geng Chao, Li Xin-Yang, Zhang Xiao-Jun, Rao Chang-Hui. Influence and simulated correction of tip/tilt phase error on fiber laser coherent beam combination. Acta Physica Sinica, doi: 10.7498/aps.60.114202
    [13] MaYan-Xing, Wang Xiao-Lin, Zhou Pu, Ma Hao-Tong, Zhao Hai-Chuan, Xu Xiao-Jun, Si Lei, Liu Ze-Jin, Zhao Yi-Jun. Effect of atmosphere turbulence on phase modulation signals in coherent beam combination with multi-dithering technique. Acta Physica Sinica, doi: 10.7498/aps.60.094211
    [14] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. High precision phase control system in coherent combining of fiber laser based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, doi: 10.7498/aps.59.973
    [15] Fan Xin-Yan, Liu Jing-Jiao, Liu Jin-Sheng, Wu Jing-Li. Theoretical and experimental study of multi-element coherent fiber array. Acta Physica Sinica, doi: 10.7498/aps.59.2462
    [16] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. Coherent beam combining of multi-wavelength lasers based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, doi: 10.7498/aps.59.5474
    [17] Han Wei-Tao, Hou Lan-Tian, Geng Peng-Cheng. Numerical and experimental study on coherent combining of double cladding multi-core photonic crystal fiber. Acta Physica Sinica, doi: 10.7498/aps.59.7091
    [18] Xiao Rui, Hou Jing, Jiang Zong-Fu. Effect of partial coherence laser arrays on far-field output properties. Acta Physica Sinica, doi: 10.7498/aps.57.853
    [19] Xiao Rui, Hou Jing, Jiang Zong-Fu. Study of far field distribution of fiber amplifier arrays. Acta Physica Sinica, doi: 10.7498/aps.56.4550
    [20] Xiao Rui, Zhou Pu, Hou Jing, Jiang Zong-Fu, Liu Ming. Effect of partial coherence of laser has on the irradiance distribution of coherent combining of fiber laser arrays in far field. Acta Physica Sinica, doi: 10.7498/aps.56.819
Metrics
  • Abstract views:  27
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  22 December 2025
  • /

    返回文章
    返回