-
The development of rare-earth permanent magnets that combine high maximum energy product with high Curie temperature has emerged as a central challenge in the field of applied magnets. Sm-Fe-N magnets exhibit a theoretical maximum energy product comparable to Nd-Fe-B (~59 MGOe), along with a higher Curie temperature and greater magnetocrystalline anisotropy. Furthermore, Sm-Fe-N magnets do not rely on scarce heavy rare-earth elements and are immune to price fluctuations of neodymium. These advantages position them as a highly promising rareearth permanent magnet material, offering significant potential for achieving both high stability and coercivity. In this work, using complementary neutron diffraction, 57Fe Mössbauer spectroscopy, highfield magnetic measurements, and X-ray magnetic circular dichroism (XMCD), we systematically investigate nitrogen content and site occupancy, magnetic structure and hyperfine fields, as well as the Sm/Fe spin-orbit coupling in Sm-Fe-N. The specialized sample preparation and absorption correction methods enable the acquisition of high-quality neutron diffraction patterns for Sm2Fe17 and its nitrides. The result reveals that N atoms preferentially occupy the 9e interstitial sites, forming the fully nitrided Sm2Fe17N3. Combined with 57Fe Mössbauer spectroscopy analysis, it is found that the nitridation reaction significantly enhances both the Curie temperature and the ground-state Fe magnetic moment, thereby improving the room-temperature magnetic properties. Furthermore, high-field magnetic measurements reveal that the anisotropy field of Sm2Fe17N3 reaches 22.6 T at room temperature and exceeds 50 T at 2 K. This confirmsthe ultra-strong magnetocrystalline anisotropy of Sm2Fe17N3, demonstrating its significant potential for achieving high coercivity. XMCD measurements demonstrate that the magnetism of Sm is dominated by its orbital magnetic moment, establishing its strong spin-orbit coupling as the physical origin of the ultra-strong magnetocrystalline anisotropy. In contrast, the orbital magnetic moment of Fe is largely quenched, resulting in a magnetic moment that is primarily spin-derived. This work clarifies the intrinsic relationship between the content and site occupancy of interstitial nitrogen atoms and the magnetocrystalline anisotropy, and reveals the spinorbit coupling mechanism involving rare-earth Sm and Fe. These findings provide an important theoretical basis for the design of high-performance permanent magnet materials.
-
Keywords:
- Sm-Fe-N /
- rare-earth permanent magnet /
- magnetocrystalline anisotropy /
- magnetic properties
-
[1] Kaneko Y, Kuniyoshi F, Ishigaki N 2006 J. Alloys Compd. 408-412 1344
[2] Coey J M D, Sun H 1990 J. Magn. Magn. Mater. 87 L251
[3] Qian H, Wang F, Liang D, Lin Z, Han J, Yang J, 2023 J. Chin. Soc. Rare Earths 41 439 (in Chinese) [千辉东, 王芳贵, 梁栋, 林中冲, 韩景智, 杨金波 2023 中国稀土学报 41 439]
[4] Yoneyama T, Yamamoto T, Hidaka T 1995 Appl. Phys. Lett. 67 3197
[5] Hidaka T, Yamamoto T, Nakamura H, Fukuno A 1998 J. Appl. Phys. 83 6917
[6] Yamamoto H, Matsumoto S, Fukuno A 2001 J. Jpn. Soc. Powder Powder Metall. 48 184
[7] Yamamoto H, Mori T 2003 J. Jpn. Soc. Powder Powder Metall. 50 865
[8] Sakurada S T A, Arai T. 2003 J. Jpn. Soc. Powder Powder Metall. 50 626
[9] Kawamoto A, Ishikawa T, Yasuda S, Takeya K, Ishizaka K, Iseki T, Ohmori K 1999 IEEE Trans. Magn. 35 3322
[10] Kolodkin D A, Popov A G, Protasov A V, Gaviko V S, Vasilenko D Y, Kavita S, Prabhu D, Gopalan R 2021 J. Magn. Magn. Mater. 518 167416
[11] Matsuura M, Yamamoto K, Tezuka N, Sugimoto S 2020 J. Magn. Magn. Mater. 510 166943
[12] Matsuura M, Yarimizu K, Osawa Y, Tezuka N, Sugimoto S, Ishikawa T, Yoneyama Y 2019 J. Magn. Magn. Mater. 471 310
[13] Coey J M D, Stamenov P, Porter S B, Venkatesan M, Zhang R, Iriyama T 2019 J. Magn. Magn. Mater. 480 186
[14] Xing M, Han J, Zhang Y, Liu S, Chen Z, Wang C, Yang J, Du H, Yang Y, Yue M 2015 J. Appl. Phys. 117 17A732
[15] Yang Y, Yang J, Han J, Wang C, Liu S, Du H 2015 IEEE Trans. Magn. 51 1
[16] Ma X B, Li L Z, Liu S Q, Hu B Y, Han J Z, Wang C S, Du H L, Yang Y C, Yang J B 2014 J. Alloys Compd. 612 110
[17] Qian H-D, Xing M, Han J, Liang D, Lin Z, Wang Y, Liu F, Zhang P, Zhu T, Tian G, Xu Q, Fang C, Liu S, Yang W, Niu E, Cai D, Rao X, Yang J, Yang Y 2025 J. Alloys Compd. 1011 178352
[18] Coey J M D, Sun H 1990 J. Magn. Magn. Mater. 87 L251
[19] Katter M, Wecker J, Kuhrt C, Schultz L, Grössinger R 1992 J. Magn. Magn. Mater. 117 419
[20] Kou X, Qiang W, Kronmüller H, Schultz L 1993 J. Appl. Phys. 74 6791
[21] Sippel A, Jahn L, Loewenhaupt M, Eckert D, Kerschl P, Handstein A, Müller K H, Wolf M, Kuz’min M D, Steinbeck L, Richter M, Teresiak A, Bewley R 2002 Phys. Rev. B 65 064408
[22] Hu J, Dragon T, Sartorelli M-L, Kronmüller H 1993 Phys. Status Solidi A 136 207
[23] Miraglia S, Soubeyroux J L, Kolbeck C, Isnard O, Fruchart D, Guillot M 1991 J. Less Common Met. 171 51
[24] Katter M, Wecker J, Kuhrt C, Schultz L, Grössinger R 1992 J. Magn. Magn. Mater. 114 35
[25] Iriyama T, Kobayashi K, Imaoka N, Fukuda T, Kato H, Nakagawa Y 1992 IEEE Trans. Magn. 28 2326
[26] Katter M, Wecker J, Schultz L 1991 J. Appl. Phys. 70 3188
[27] Kato H, Yamada M, Kido G, Nakagawa Y, Iriyama T, Kobayashi K 1993 J. Appl. Phys. 73 6931
[28] Ma X, Li L, Liu S, Hu B, Han J, Wang C, Du H, Yang Y, Yang J 2014 J. Alloys Compd. 612 110
[29] Franz A, Hoser A 2017 J. Large Scale Res. Facil. 3 A103
[30] Rodríguez-Carvajal J 1993 Physica B 192 55
[31] Rietveld H M 1967 Acta Crystallogr. 22 151
[32] Grössinger R, Sun X, Eibler R, Buschow K, Kirchmayr H 1986 J. Magn. Magn. Mater. 58 55
[33] Sun J Z 2000 Phys. Rev. B 62 570
[34] Brennan S, Skomski R, Cugat O, Coey J M D 1995 J. Magn. Magn. Mater. 140-144 971
[35] Pandey T, Du M H, Parker D S 2018 Phys. Rev. Appl. 9 034002
[36] Knyazev Y V, Kuz’min Y I, Kuchin A G, Lukoyanov A V, Nekrasov I A 2007 J. Phys.: Condens. Matter 19 116215
[37] Diop L V B, Kuz'min M D, Skokov K P, Karpenkov D Y, Gutfleisch O 2016 Phys. Rev. B 94 144413
[38] Bartoli T, Joubert J-M, Provost K, Elkaim E, Paul-Boncour V, Monnier J, Moscovici J, Bessais L 2021 Inorg. Chem. 60 1533
[39] Schmitt D, Ouladdiaf B 1998 J. Appl. Crystallogr. 31 620
[40] Odkhuu D, Ochirkhuyag T, Hong S C 2020 Phys. Rev. Appl. 13 054076
[41] Wang J, Liang L, Zhang L T, Yano M, Terashima K, Kada H, Kato S, Kadono T, Imada S, Nakamura T, Hirano S 2016 Intermetallics 69 42
[42] Laan G v d, Figueroa A I 2014 Coord. Chem. Rev. 277-278 95
[43] Soares M M, Lamirand A D, Ramos A Y, De Santis M, Tolentino H C N 2014 Phys. Rev. B 90 214403
Metrics
- Abstract views: 37
- PDF Downloads: 3
- Cited By: 0









下载: