-
For future millimeter/submillimeter and terahertz astronomy, kilo-pixel imaging arrays of ultra-sensitive, background-limited detectors are essential. Superconducting kinetic inductance detectors (KIDs) are a leading candidate for this purpose, given their intrinsic frequency-domain multiplexing and straightforward fabrication. Aluminum, which has a long quasiparticle lifetime, is a crucial material for implementing the sensitive element of a KID. A key figure of merit that quantifies detector sensitivity is the noise equivalent power (NEP). This study compares two characterization methods — small-signal analysis and a frequency-shift response model—for optical responsivity and NEP of an aluminum-based terahertz KID coupled to a cryogenic blackbody. The KID is a lumpedelement, high-Q microwave resonator consisting of a tantalum interdigitated capacitor in parallel with an aluminum inductor, with the latter acting as the 15 THz absorber. The small-signal analysis method, which employs phase and amplitude as observables, demands high precision in blackbody temperature control and involves long measurement times. In contrast, the frequency shift response model method, utilizing frequency and dissipation as observables, places less stringent demands on thermometer resolution and enables faster measurements. Moreover, it fits the fractional frequency shift response more accurately than linear models. Consequently, it represents an efficient and rapid approach for characterizing the optical responsivity and NEP of KIDs. With this method, a minimum optical frequency NEP of $7.5 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ and a dissipation NEP of $7.1 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ were achieved for the terahertz KID at 300 Hz, referenced to the absorbed power. Furthermore, the frequency NEP significantly exceeded the dissipation NEP at 1, 10, and 100 Hz, which is attributable to two-level system noise. Our work offers valuable technical guidance for the rapid NEP characterization of high-sensitivity terahertz KIDs in low-temperature measurement applications.
-
Keywords:
- noise equivalent power (NEP) /
- optical responsivity /
- characterization methods /
- kinetic inductance detectors (KIDs)
-
[1] Day P K, LeDuc H G, Mazin B A, Vayonakis A, Zmuidzinas J 2003 Nature 425 817
[2] Monfardini A, Swenson L J, Bideaud A, Désert F X, Yates S J C, Benoit A, Baryshev A M, Baselmans J J A, Doyle S, Klein B, Roesch M, Tucker C, Ade P, Calvo M, Camus P, Giordano C, Guesten R, Hoffmann C, Leclercq S, Mauskopf P, Schuster K F 2010 Astron. Astrophys. 521 A29
[3] Ferrari L, Yurduseven O, Llombart N, Yates S J C, Bueno J, Murugesan V, Thoen D J, Endo A, Baryshev A M, Baselmans J J A 2018 IEEE Trans. Terahertz Sci. Technol. 8 127
[4] Shu S, Calvo M, Goupy J, Leclercq S, Catalano A, Bideaud A, Monfardini A, Driessen E F C 2021 Appl. Phys. Lett. 119 092601
[5] Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511
[6] Bueno J, Yurduseven O, Yates S J C, Llombart N, Murugesan V, Thoen D J, Baryshev A M, Neto A, Baselmans J J A 2017 Appl. Phys. Lett. 110 233503
[7] Chi T Y, Shi L L, Su R F, Zang S M, Tan R, Yao S Y, Zhu Y W, Chen J H, Wu J B, Tu X C, Jin B B, Wang H Q, Cao J C, Chen J, Wu P H 2024 Appl. Phys. Lett. 125 202602
[8] Su R F, Shi L L, Zhou T, Yao B Z, Wu J B, Tu X C, Jia X Q, Kang L, Jin B B, Wang H B, Chen J, Wu P H 2022 Supercond. Sci. Technol. 35 055016
[9] Day P K, Cothard N F, Albert C, Foote L, Kane E, Eom B H, Thakur R B, Janssen R M J, Beyer A, Echternach P M, van Berkel S, Hailey-Dunsheath S, Stevenson T R, Dabironezare S, Baselmans J J A, Glenn J, Bradford C M, Leduc H G 2024 Phys. Rev. X 14 041005
[10] Su R F, Tan R, Chen J H, Zhu Y W, Chi T Y, Zang S M, Wu J B, Tu X C, Zheng K, Chen J, Wu P H 2025 Appl. Phys. Lett. 127 192602
[11] Dai X, Wang H, Wang Y, Mai Z, Shi Z, Wang Y F, Jia H, Liu J, He Q, Dai M, Ouyang P, Chai Y, Wei L F, Zhang L, Zhong Y, Guo W, Liu S, Yu D 2025 Appl. Phys. Lett. 126 012602
[12] Guo W, Liu X, Wang Y, Wei Q, Wei Q, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601
[13] Kouwenhoven K, Fan D, Biancalani E, de Rooij S A H, Karim T, Smith C S, Murugesan V, Thoen D J, Baselmans J J A, de Visser P J 2023 Phys. Rev. Appl. 19 034007
[14] Mazin B A, Meeker S R, Strader M J, Szypryt P, Marsden D, van Eyken J C, Duggan G E, Walter A B, Ulbricht G, Johnson M, Bumble B, O'Brien K, Stoughton C 2013 Publ. Astron. Soc. Pac. 125 1348
[15] Adam R, Adane A, Ade P A R, André P, Andrianasolo A, Aussel H, Beelen A, Benoît A, Bideaud A, Billot N, Bourrion O, Bracco A, Calvo M, Catalano A, Coiffard G, Comis B, De Petris M, Désert F X, Doyle S, Driessen E F C, Evans R, Goupy J, Kramer C, Lagache G, Leclercq S, Leggeri J P, Lestrade J F, Macías-Pérez J F, Mauskopf P, Mayet F, Maury A, Monfardini A, Navarro S, Pascale E, Perotto L, Pisano G, Ponthieu N, Revéret V, Rigby A, Ritacco A, Romero C, Roussel H, Ruppin F, Schuster K, Sievers A, Triqueneaux S, Tucker C, Zylka R 2018 Astron. Astrophys. 609 A115
[16] Mazin B A 2020 arXiv 2004.14576v1 [astro-ph.IM]
[17] de Visser P J, Baselmans J J A, Bueno J, Llombart N, Klapwijk T M 2014 Nat. Commun. 5 3130
[18] Hailey-Dunsheath S, Berkel S v, Beyer A D, Foote L, Janssen R M J, LeDuc H G, Echternach P M, Bradford C M, Baselmans J J A, Dabironezare S, Day P K, Cothard N F, Glenn J 2025 IEEE Trans. Terahertz Sci. Technol. 15 4
[19] Gao J 2008 The Physics of Superconducting Microwave Resonators Ph.D. Dissertation (Pasadena: California Institute of Technology)
[20] Baselmans J J A, Facchin F, Laguna A P, Bueno J, Thoen D J, Murugesan, Llombart N, de Visser P J 2022 Astron. Astrophys. 665 A17
[21] Shi Z, Dai X, Wang H, Mai Z, Ouyang P, Wang Y, Chai Y, Wei L, Liu X, Pan C, Guo W, Shu S, Wang Y 2024 Acta Phys. Sin. 73 038501 (in Chinese) [石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文 2024 物理学报 73 038501]
[22] Su R F, Chen J H, Tan R, Zhu Y W, Chi T Y, Zang S M, Wu J B, Tu X C, Yu M, Chen J, Wu P H 2025 Appl. Phys. Lett. 127 162601
[23] Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89
[24] Foote L, Albert C, Baselmans J, Beyer A D, Cothard N F, Day P K, Hailey-Dunsheath S, Echternach P M, Janssen R M J, Kane E, Leduc H, Liu L J, Nguyen H, Perido J, Glenn J, Zmuidzinas J, Bradford C M 2024 J. Low Temp. Phys. 214 219
Metrics
- Abstract views: 68
- PDF Downloads: 1
- Cited By: 0









下载: