Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization methods for noise equivalent power of high-sensitivity terahertz superconducting kinetic inductance detectors

Su Run-Feng Tan Rui Gu Zi-Chen Wu Jing-Bo Tu Xue-Cou Chen Jian Wu Pei-Heng

Citation:

Characterization methods for noise equivalent power of high-sensitivity terahertz superconducting kinetic inductance detectors

Su Run-Feng, Tan Rui, Gu Zi-Chen, Wu Jing-Bo, Tu Xue-Cou, Chen Jian, Wu Pei-Heng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • For future millimeter/submillimeter and terahertz astronomy, kilo-pixel imaging arrays of ultra-sensitive, background-limited detectors are essential. Superconducting kinetic inductance detectors (KIDs) are a leading candidate for this purpose, given their intrinsic frequency-domain multiplexing and straightforward fabrication. Aluminum, which has a long quasiparticle lifetime, is a crucial material for implementing the sensitive element of a KID. A key figure of merit that quantifies detector sensitivity is the noise equivalent power (NEP). This study compares two characterization methods — small-signal analysis and a frequency-shift response model—for optical responsivity and NEP of an aluminum-based terahertz KID coupled to a cryogenic blackbody. The KID is a lumpedelement, high-Q microwave resonator consisting of a tantalum interdigitated capacitor in parallel with an aluminum inductor, with the latter acting as the 15 THz absorber. The small-signal analysis method, which employs phase and amplitude as observables, demands high precision in blackbody temperature control and involves long measurement times. In contrast, the frequency shift response model method, utilizing frequency and dissipation as observables, places less stringent demands on thermometer resolution and enables faster measurements. Moreover, it fits the fractional frequency shift response more accurately than linear models. Consequently, it represents an efficient and rapid approach for characterizing the optical responsivity and NEP of KIDs. With this method, a minimum optical frequency NEP of $7.5 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ and a dissipation NEP of $7.1 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ were achieved for the terahertz KID at 300 Hz, referenced to the absorbed power. Furthermore, the frequency NEP significantly exceeded the dissipation NEP at 1, 10, and 100 Hz, which is attributable to two-level system noise. Our work offers valuable technical guidance for the rapid NEP characterization of high-sensitivity terahertz KIDs in low-temperature measurement applications.
  • [1]

    Day P K, LeDuc H G, Mazin B A, Vayonakis A, Zmuidzinas J 2003 Nature 425 817

    [2]

    Monfardini A, Swenson L J, Bideaud A, Désert F X, Yates S J C, Benoit A, Baryshev A M, Baselmans J J A, Doyle S, Klein B, Roesch M, Tucker C, Ade P, Calvo M, Camus P, Giordano C, Guesten R, Hoffmann C, Leclercq S, Mauskopf P, Schuster K F 2010 Astron. Astrophys. 521 A29

    [3]

    Ferrari L, Yurduseven O, Llombart N, Yates S J C, Bueno J, Murugesan V, Thoen D J, Endo A, Baryshev A M, Baselmans J J A 2018 IEEE Trans. Terahertz Sci. Technol. 8 127

    [4]

    Shu S, Calvo M, Goupy J, Leclercq S, Catalano A, Bideaud A, Monfardini A, Driessen E F C 2021 Appl. Phys. Lett. 119 092601

    [5]

    Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511

    [6]

    Bueno J, Yurduseven O, Yates S J C, Llombart N, Murugesan V, Thoen D J, Baryshev A M, Neto A, Baselmans J J A 2017 Appl. Phys. Lett. 110 233503

    [7]

    Chi T Y, Shi L L, Su R F, Zang S M, Tan R, Yao S Y, Zhu Y W, Chen J H, Wu J B, Tu X C, Jin B B, Wang H Q, Cao J C, Chen J, Wu P H 2024 Appl. Phys. Lett. 125 202602

    [8]

    Su R F, Shi L L, Zhou T, Yao B Z, Wu J B, Tu X C, Jia X Q, Kang L, Jin B B, Wang H B, Chen J, Wu P H 2022 Supercond. Sci. Technol. 35 055016

    [9]

    Day P K, Cothard N F, Albert C, Foote L, Kane E, Eom B H, Thakur R B, Janssen R M J, Beyer A, Echternach P M, van Berkel S, Hailey-Dunsheath S, Stevenson T R, Dabironezare S, Baselmans J J A, Glenn J, Bradford C M, Leduc H G 2024 Phys. Rev. X 14 041005

    [10]

    Su R F, Tan R, Chen J H, Zhu Y W, Chi T Y, Zang S M, Wu J B, Tu X C, Zheng K, Chen J, Wu P H 2025 Appl. Phys. Lett. 127 192602

    [11]

    Dai X, Wang H, Wang Y, Mai Z, Shi Z, Wang Y F, Jia H, Liu J, He Q, Dai M, Ouyang P, Chai Y, Wei L F, Zhang L, Zhong Y, Guo W, Liu S, Yu D 2025 Appl. Phys. Lett. 126 012602

    [12]

    Guo W, Liu X, Wang Y, Wei Q, Wei Q, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601

    [13]

    Kouwenhoven K, Fan D, Biancalani E, de Rooij S A H, Karim T, Smith C S, Murugesan V, Thoen D J, Baselmans J J A, de Visser P J 2023 Phys. Rev. Appl. 19 034007

    [14]

    Mazin B A, Meeker S R, Strader M J, Szypryt P, Marsden D, van Eyken J C, Duggan G E, Walter A B, Ulbricht G, Johnson M, Bumble B, O'Brien K, Stoughton C 2013 Publ. Astron. Soc. Pac. 125 1348

    [15]

    Adam R, Adane A, Ade P A R, André P, Andrianasolo A, Aussel H, Beelen A, Benoît A, Bideaud A, Billot N, Bourrion O, Bracco A, Calvo M, Catalano A, Coiffard G, Comis B, De Petris M, Désert F X, Doyle S, Driessen E F C, Evans R, Goupy J, Kramer C, Lagache G, Leclercq S, Leggeri J P, Lestrade J F, Macías-Pérez J F, Mauskopf P, Mayet F, Maury A, Monfardini A, Navarro S, Pascale E, Perotto L, Pisano G, Ponthieu N, Revéret V, Rigby A, Ritacco A, Romero C, Roussel H, Ruppin F, Schuster K, Sievers A, Triqueneaux S, Tucker C, Zylka R 2018 Astron. Astrophys. 609 A115

    [16]

    Mazin B A 2020 arXiv 2004.14576v1 [astro-ph.IM]

    [17]

    de Visser P J, Baselmans J J A, Bueno J, Llombart N, Klapwijk T M 2014 Nat. Commun. 5 3130

    [18]

    Hailey-Dunsheath S, Berkel S v, Beyer A D, Foote L, Janssen R M J, LeDuc H G, Echternach P M, Bradford C M, Baselmans J J A, Dabironezare S, Day P K, Cothard N F, Glenn J 2025 IEEE Trans. Terahertz Sci. Technol. 15 4

    [19]

    Gao J 2008 The Physics of Superconducting Microwave Resonators Ph.D. Dissertation (Pasadena: California Institute of Technology)

    [20]

    Baselmans J J A, Facchin F, Laguna A P, Bueno J, Thoen D J, Murugesan, Llombart N, de Visser P J 2022 Astron. Astrophys. 665 A17

    [21]

    Shi Z, Dai X, Wang H, Mai Z, Ouyang P, Wang Y, Chai Y, Wei L, Liu X, Pan C, Guo W, Shu S, Wang Y 2024 Acta Phys. Sin. 73 038501 (in Chinese) [石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文 2024 物理学报 73 038501]

    [22]

    Su R F, Chen J H, Tan R, Zhu Y W, Chi T Y, Zang S M, Wu J B, Tu X C, Yu M, Chen J, Wu P H 2025 Appl. Phys. Lett. 127 162601

    [23]

    Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89

    [24]

    Foote L, Albert C, Baselmans J, Beyer A D, Cothard N F, Day P K, Hailey-Dunsheath S, Echternach P M, Janssen R M J, Kane E, Leduc H, Liu L J, Nguyen H, Perido J, Glenn J, Zmuidzinas J, Bradford C M 2024 J. Low Temp. Phys. 214 219

  • [1] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, doi: 10.7498/aps.73.20231526
    [2] Shi Zhong-Yu, Dai Xu-Cheng, Wang Hao-Yu, Mai Zhan-Zhang, Ouyang Peng-Hui, Wang Yi-Zhuo, Chai Ya-Qiang, Wei Lian-Fu, Liu Xu-Ming, Pan Chang-Zhao, Guo Wei-Jie, Shu Shi-Bo, Wang Yi-Wen. Noise spectrum analysis of superconducting kinetic inductance detectors. Acta Physica Sinica, doi: 10.7498/aps.73.20231504
    [3] Huang Guang-Wei, Wu Kun, Chen Ye, Li Lin-Xiang, Zhang Si-Yuan, Wang Zun-Gang, Zhu Hong-Ying, Zhou Chun-Zhi, Zhang Yi-Yun, Liu Zhi-Qiang, Yi Xiao-Yan, Li Jin-Min. Response to 14 MeV neutrons for single-crystal diamond detectors. Acta Physica Sinica, doi: 10.7498/aps.70.20210891
    [4] Zhang Biao, Chen Qi, Guan Yan-Qiu, Jin Fei-Fei, Wang Hao, Zhang La-Bao, Tu Xue-Cou, Zhao Qing-Yuan, Jia Xiao-Qing, Kang Lin, Chen Jian, Wu Pei-Heng. Research progress of photon response mechanism of superconducting nanowire single photon detector. Acta Physica Sinica, doi: 10.7498/aps.70.20210652
    [5] Sun Yong-Feng, Xu Liang, Shen Xian-Chun, Jin Ling, Xu Han-Yang, Cheng Xiao-Xiao, Wang Yu-Hao, Liu Wen-Qing, Liu Jian-Guo. High-order nonlinear response correction method for infrared radiation detector. Acta Physica Sinica, doi: 10.7498/aps.70.20201530
    [6] Huang Dian, Dai Wan-Lin, Wang Yi-Wen, He Qing, Wei Lian-Fu. Noise processing of superconducting kinetic inductance single photon detector. Acta Physica Sinica, doi: 10.7498/aps.70.20210185
    [7] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, doi: 10.7498/aps.66.245201
    [8] Liu Hong-Mei, Yang Chun-Hua, Liu Xin, Zhang Jian-Qi, Shi Yun-Long. Noise characterization of quantum dot infrared photodetectors. Acta Physica Sinica, doi: 10.7498/aps.62.218501
    [9] Wang Lan-Xi, Chen Xue-Kang, Wu Gan, Cao Sheng-Zhu, Shang Kai-Wen. The influence of grain boundary on time response of diamond ultraviolet photo-detector. Acta Physica Sinica, doi: 10.7498/aps.61.038101
    [10] Song Zhi-Ming, Zhao Dong-Xu, Guo Zhen, Li Bin-Hui, Zhang Zhen-Zhong, Shen De-Zhen. Fabrication and fast photoresponse properties of ZnO nanowires photodetectors. Acta Physica Sinica, doi: 10.7498/aps.61.052901
    [11] Li Yang, Guo Shu-Xu. A new method to estimate the parameter of 1/f Noise of high power semiconductor laser diode based on sparse decomposition. Acta Physica Sinica, doi: 10.7498/aps.61.034208
    [12] Wang Guang-Qiang, Wang Jian-Guo, Tong Chang-Jiang, Li Xiao-Ze, Wang Xue-Feng. Analysis and design of semiconductor detector for high-power terahertz pulse. Acta Physica Sinica, doi: 10.7498/aps.60.030702
    [13] Chen Wen-Hao, Du Lei, Yin Xue-Song, Kang Li, Wang Fang, Chen Song. Investigation on the low-freauency noise physical models and the defects' characterization of the PbS infrared dectector. Acta Physica Sinica, doi: 10.7498/aps.60.107202
    [14] Liu Xiao-Yu, Ma Wen-Quan, Zhang Yan-Hua, Huo Yong-Heng, Chong Ming, Chen Liang-Hui. Two-color quantum well infrared photodetector simultaneously working at 10—14 μm. Acta Physica Sinica, doi: 10.7498/aps.59.5720
    [15] Li Jian-Jun, Zheng Xiao-Bing, Lu Yun-Jun, Zhang-Wei, Xie Ping, Zou Peng. Accurate calibration of the spectral responsivity of silicon trap detectors between 350 and 1064 nm. Acta Physica Sinica, doi: 10.7498/aps.58.6273
    [16] Zhou Li-Dan, Su Jing-Qin, Li Ping, Liu Lan-Qin, Wang Wen-Yi, Wang Fang, Mo Lei, Cheng Wen-Yong, Zhang Xiao-Min. Power spectral density method of defects on optical elements of high-power laser facility and its equivalent algorithm. Acta Physica Sinica, doi: 10.7498/aps.58.6279
    [17] CHEN CHANG-HONG, YI XIN-JIAN, XIONG BI-FENG. INFRARED RESPONSIVITY OF UNCOOLED VO2-BASED THIN FILMS BOLOMETER. Acta Physica Sinica, doi: 10.7498/aps.50.450
    [18] CHEN YAN-SONG. EXPERIMENTAL STUDY ON INFRARED PHOTORESPONSE OF FERROELECTRIC THIN FILM DETECTOR PbZrTiO3. Acta Physica Sinica, doi: 10.7498/aps.47.1378
    [19] GAN DE-CHANG. . Acta Physica Sinica, doi: 10.7498/aps.44.137
    [20] XU FENG, LIU LIAO. PARTICLE DETECTOR MODEL FOR INSTANT RESPONSE. Acta Physica Sinica, doi: 10.7498/aps.37.1267
Metrics
  • Abstract views:  68
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  05 January 2026
  • /

    返回文章
    返回