Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics of actin monomers assembled into long filaments

Guo Kun-Kun Yi Xie

Citation:

Dynamics of actin monomers assembled into long filaments

Guo Kun-Kun, Yi Xie
cstr: 32037.14.aps.65.178702
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We investigate the dynamics of actin monomers that are assembled into long filaments via the particle-based Brownian dynamics simulations. In order to study the dynamics of long filaments containing up to several hundred protomers, a coarse-grained model for actin polymerization involving several simplifications is used. In order to overcome the large separation of time scales between the diffusive motion of the free monomers and the relatively slow polymerized and depolymerized processes at the two ends of the filaments, all polymerized and depolymerized rates are rescaled by a dimensionless parameter. Actin protomers within a filament generally possess three nucleotide states corresponding to a bound adenosine triphosphate (ATP), adenosine diphosphate with inorganic phosphate (ADP. Pi), and ADP molecules in the presence of ATP hydrolysis. Here in this paper, single nucleotide state and two nucleotide states of actin protomers are described by the simplified theoretical model, giving the dependence of the growth rate on actin concentration. The simplest case where all protomers are identical, is provided by the assembly of ADP-actins. In the simulations, the growth rate is found to increase linearly with free monomer concentration, which agrees quantitatively with in vitro experimental result. These surprised phenomena observed in the experiments, such as treadmilling processes and length diffusion of actin filaments at the steady state, are presented in detail by Brownian dynamics simulations. For free actin concentrations close to the critical concentration, cT ccr, T, the filaments undergo treadmilling, that is, they grow at the barbed end and shrink at the pointed end, leading to the directed translational motion of the filament. In the absence of ATP hydrolysis, the functional dependence of a length diffusion constant on ADP-actin monomer concentration implies that a length diffusion constant is found to increase linearly with ADP-actin monomer concentration. With the coupling of ATP hydrolysis, a peak of the filament length diffusion as a function of ATP-actin monomer concentration is observed i. e. , the length diffusion coefficient is peaked near to 35 mon2/s below the critical concentration and recovers to the expected estimate of 1 mon2/s above the critical concentration. These obtained results are well consistent with the experimental results and stochastic theoretical analysis. Furthermore, several other quantities and relations that are difficult to study experimentally but provide nontrivial crosschecks on the consistency of our simulations, are investigated in the particle-based simulations. The particle-based simulations developed in our studies would easily extend to study a variety of more complex systems, such as the assembly process of other dynamic cytoskeletons
      Corresponding author: Guo Kun-Kun, kunkunguo@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21274038).
    [1]

    Bray D 2001 Cell Movements (Garland: Garland Science) pp138-145

    [2]

    Alberts B 2014 Molecular Biology of the Cell (Garland: Garland Science) pp216-217

    [3]

    Lodish H 2012 Molecular Cell Biology (Freeman: W. H. Freeman Company) pp89-93

    [4]

    Phillips R 2012 Physical Biology of the Cell (Garland: Garland Publishing) pp320-324

    [5]

    Oudenaarden A V, Theriot J A 1999 Nat. Cell Biol. 1 493

    [6]

    Jasper V D G, Ewa P, Julie P, Ccile S 2005 PNAS 102 7847

    [7]

    Vavylonis D, Yang Q B, Shaughnessy B O 2005 PNAS 102 8543

    [8]

    Ohm T, Wegner A 1987 Biochim. Biophys. Acta 120 8

    [9]

    Pantaloni D, Carlier M F, Korn E D 1985 J. Biol. Chem 260 6572

    [10]

    Fujiwara I, Takahashi S, Ishiwata 2002 Nat. Cell Biol. 4 666

    [11]

    Mogilner A, Oster G 1996 Biophys. J 84 1591

    [12]

    Bindschadler M, Osborn E A, McGrath J L 2004 Biophys. J 86 2720

    [13]

    Fass J, Pak C, Bamburg J, Mogilner A 2008 J. Theor. Biol 252 173

    [14]

    Sept D, Mccammon J A 2001 Biophys. J. 81 667

    [15]

    Guo K K, Shillcock C J, Lipowsky R 2009 J. Chem. Phys. 131 120

    [16]

    Guo K K, Shillcock C J, Lipowsky R 2010 J. Chem. Phys. 133 155105

    [17]

    Guo K K, Qiu D 2011 J. Chem. Phys. 135 105101

    [18]

    Guo K K, Han W C 2011 Acta Chim. Sin. 69 145 (in Chinese) [郭坤琨, 韩文驰 2011 化学学报 69 145]

    [19]

    Pollard T D 1986 J. Cell Biol. 103 2747

    [20]

    Pollard T D 1984 J. Cell Biol. 99 769

    [21]

    Didry D, Carlier M F, Pantaloni D 1998 J. Biol. Chem. 273 25602

    [22]

    Van Kampen N G 1992 Stochastic Processes in Physics and Chemistry (New York: Elsevier) pp351-356

    [23]

    Wang J, Gen Y, Liu F 2015 Acta Phys. Sin. 64 58707

  • [1]

    Bray D 2001 Cell Movements (Garland: Garland Science) pp138-145

    [2]

    Alberts B 2014 Molecular Biology of the Cell (Garland: Garland Science) pp216-217

    [3]

    Lodish H 2012 Molecular Cell Biology (Freeman: W. H. Freeman Company) pp89-93

    [4]

    Phillips R 2012 Physical Biology of the Cell (Garland: Garland Publishing) pp320-324

    [5]

    Oudenaarden A V, Theriot J A 1999 Nat. Cell Biol. 1 493

    [6]

    Jasper V D G, Ewa P, Julie P, Ccile S 2005 PNAS 102 7847

    [7]

    Vavylonis D, Yang Q B, Shaughnessy B O 2005 PNAS 102 8543

    [8]

    Ohm T, Wegner A 1987 Biochim. Biophys. Acta 120 8

    [9]

    Pantaloni D, Carlier M F, Korn E D 1985 J. Biol. Chem 260 6572

    [10]

    Fujiwara I, Takahashi S, Ishiwata 2002 Nat. Cell Biol. 4 666

    [11]

    Mogilner A, Oster G 1996 Biophys. J 84 1591

    [12]

    Bindschadler M, Osborn E A, McGrath J L 2004 Biophys. J 86 2720

    [13]

    Fass J, Pak C, Bamburg J, Mogilner A 2008 J. Theor. Biol 252 173

    [14]

    Sept D, Mccammon J A 2001 Biophys. J. 81 667

    [15]

    Guo K K, Shillcock C J, Lipowsky R 2009 J. Chem. Phys. 131 120

    [16]

    Guo K K, Shillcock C J, Lipowsky R 2010 J. Chem. Phys. 133 155105

    [17]

    Guo K K, Qiu D 2011 J. Chem. Phys. 135 105101

    [18]

    Guo K K, Han W C 2011 Acta Chim. Sin. 69 145 (in Chinese) [郭坤琨, 韩文驰 2011 化学学报 69 145]

    [19]

    Pollard T D 1986 J. Cell Biol. 103 2747

    [20]

    Pollard T D 1984 J. Cell Biol. 99 769

    [21]

    Didry D, Carlier M F, Pantaloni D 1998 J. Biol. Chem. 273 25602

    [22]

    Van Kampen N G 1992 Stochastic Processes in Physics and Chemistry (New York: Elsevier) pp351-356

    [23]

    Wang J, Gen Y, Liu F 2015 Acta Phys. Sin. 64 58707

  • [1] GUO Sihang, YANG Guangyu, MENG Guoqing, WANG Yingying, PAN Junxing, ZHANG Jinjun. Dynamic self-assembly of active particle systems controlled by light fields. Acta Physica Sinica, 2025, 74(9): 090501. doi: 10.7498/aps.74.20241556
    [2] Feng Yan-Hui, Feng Dai-Li, Chu Fu-Qiang, Qiu Lin, Sun Fang-Yuan, Lin Lin, Zhang Xin-Xin. Thermal design frontiers of nano-assembled phase change materials for heat storage. Acta Physica Sinica, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [3] Lin Nai-Bo, Lin You-Hui, Huang Qiao-Ling, Liu Xiang-Yang. Supramolecular gels and mesoscopic structure. Acta Physica Sinica, 2016, 65(17): 174702. doi: 10.7498/aps.65.174702
    [4] Zhang Ran, Xiao Xin-Ze, Lü Chao, Luo Yang, Xu Ying. Assembling of gold nanorods by femtosecond laser fabrication. Acta Physica Sinica, 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [5] Zhang Ran, Lü Chao, Xiao Xin-Ze, Luo Yang, He Yan, Xu Ying. Study on the fabrication of gold electrode by laser assembling. Acta Physica Sinica, 2014, 63(7): 074205. doi: 10.7498/aps.63.074205
    [6] Li Long, Wang Ming, Ni Hai-Bin, Shen Tian-Yi. Introduction of two-dimensional defects in inverse opal films by means of planar lithography and sol-gel co-assembly methods. Acta Physica Sinica, 2014, 63(5): 054206. doi: 10.7498/aps.63.054206
    [7] Li Chen-Pu, Han Ying-Rong, Zhan Yong, Hu Jin-Jiang, Zhang Li-Gang, Qu Jiao. An elastic-diffusion model for myosin Ⅵ molecular motor in a periodic potential field. Acta Physica Sinica, 2013, 62(23): 230501. doi: 10.7498/aps.62.230501
    [8] Ma Ying, Wang Cang-Long, Wang Wen-Yuan, Yang Yang, Ma Yun-Yun, Meng Hong-Juan, Duan Wen-Shan. The tunneling phenomena of the Fermi superfluid gases in unitarity by manipulating the Fermi-Fermi scattering length. Acta Physica Sinica, 2012, 61(18): 180303. doi: 10.7498/aps.61.180303
    [9] Ni Hai-Bin, Wang Ming, Chen Wei. Sol-gel co-assembly of inverse opal film and research on its optical properties. Acta Physica Sinica, 2012, 61(8): 084211. doi: 10.7498/aps.61.084211
    [10] Yin Fei, Hu Wei-Da, Quan Zhi-Jue, Zhang Bo, Hu Xiao-Ning, Li Zhi-Feng, Chen Xiao-Shuang, Lu Wei. Determination of electron diffusion length in HgCdTe photodiodes using laser beam induced current. Acta Physica Sinica, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [11] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [12] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [13] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Kong Tao, Hu Ying, Wang Xiao-Ping. The effect of terminal group on the electronic transport property of alkanethiol self-assembled monolayer. Acta Physica Sinica, 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [14] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [15] Wang Hao, Zeng Gu-Cheng, Liao Chang-Jun, Cai Ji-Ye, Zheng Shu-Wen, Fan Guang-Han, Chen Yong, Liu Song-Hao. Study on the metamorphosis of InP self-organized islands grown on GaxxIn1-x1-xP buffer layers. Acta Physica Sinica, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [16] Wang Yin, Li Peng, Ning Xi-Jing. Molecular dynamics study on self-assembly of C36 clusters. Acta Physica Sinica, 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [17] Xia A-Gen, Yang Bo, Jin Jin-Sheng, Zhang Yi-Wen, Tang Fan, Ye Gao-Xiang. Ordered structures and self-organized phenomena in Au films deposited on silicone oil surfaces. Acta Physica Sinica, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [18] Shen Cheng-Min, Su Yi-Kun, Yang Hai-Tao, Yang Tian-Zhong, Wang Yu-Ping, Gao Hong-Jun. Self-assembled two-dimensional structure of magnetic cobalt nanocrystals. Acta Physica Sinica, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
    [19] Zhan Jie-Min, Li Yu-Xiang. . Acta Physica Sinica, 2002, 51(4): 828-834. doi: 10.7498/aps.51.828
    [20] TANG PU-SHAN, HUO MING-HSIA, CHEN TSO-YU, WANG CHU. THE DIFFUSION LENGTH OF MINORITY CARRIERS IN N-TYPE SILICON MEASURED WITH A SURFACE BARRIER DETECTOR. Acta Physica Sinica, 1963, 19(7): 448-455. doi: 10.7498/aps.19.448
Metrics
  • Abstract views:  9301
  • PDF Downloads:  260
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2016
  • Accepted Date:  16 May 2016
  • Published Online:  05 September 2016

/

返回文章
返回