-
超高精细度微共振器是实现原子或者其他偶极子与腔强耦合作用的基本部分, 在腔量子电动力学(QED)、弱光非线性效应及微光学器件研究中扮演着重要的角色. 微腔基本参数的精密测量最终可以确定腔与原子的耦合系数、腔场衰减率, 对决定系统的动力学特性具有重要的意义. 但是由于超高精细度光学微腔本身的构造和多层镀膜的特点, 高精度地确定其共振频率及有效腔长存在一定困难. 本文结合修正的多层介质膜模型, 实验上完成了膜层为37层的超高精细度光学微腔在不同共振频率下有效腔长的精密测量, 获得了超高精细度光学微腔的共振频率及波长; 理论计算分析与实验测量结果相符, 对纵模间隔的测量精度误差低于0.004 nm, 较为修正前提高了约两个量级. 同时给出了对应不同模式数下, 光波渗入到介质中的深度. 该方法可望应用到其他微共振器的精密测量中.Ultra-high finesse micro-resonator plays an important role in realizing the interaction between atoms and cavity field in the study of cavity quantum electrodynamics (QED) system, weak optical nonlinear effects and micro-optic devices. By measuring basic parameters of the microcavity, the atom-cavity coupling coefficient and the cavity decay rate can be determined precisely. It is also useful for exploring the dynamic characteristics of the system. However, it has difficulty in determining resonate frequency and effective cavity length due to the structure of the ultra-high finesse optical microcavity itself and the characteristics of multilayer coating. In this paper, we demonstrate the precision measurement of effective cavity length under different resonant frequencies which our cavity mirror is coated with 37 layers of dielectric film. The theoretical expectation when using the revised model of the multilayer coating agrees well with that of the experiment; and the measurement error for longitudinal mode interval is below 0.004 nm which is two orders of magnitude better than that obtained in previous unrevised model. The tiny depths into mirror coatings that the standing-wave light field inside the cavity penetrates are given for different mode numbers. This method may be applied to other micro resonator in the precision measurement.
-
Keywords:
- microcavity /
- supermirror (super-finesse) /
- resonate frequency
[1] McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992
[2] Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901
[3] Kimble H J 2003 Phys. Rev. Lett. 90 249801
[4] Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nature Photonics 5 628
[5] Bao X H, Reingruber A, Dietrich P, Rui J, Duck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nature Physics 8 517
[6] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203
[7] Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447
[8] Pinkse P W H, Fischer T, Maunz P, Rempe G 2000 Nature 404 365
[9] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804
[10] Liu T, Zhang T C, Wang J M, Pen K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 物理学报 53 1346]
[11] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J, Kimble H J 2004 Phys. Rev. Lett. 93 233603
[12] DeVoe R G, Fabre C, Jungmann K, Hoffnagle J, Brewer R G 1988 Phys. Rev. A 37 1802(R)
[13] Lichten W 1985 J. Opt. Soc. Am. A 2 1869
[14] Layer H P, Deslattes R D, Schewietzer W G 1976 Appl. Opt. 15 734
[15] Hood C J, Kimble H J, Ye J 2001 Phys. Rev. A 64 033804
[16] Rempe G, Thompson R J, Kimble H J 1992 Opt. lett. 17 363
[17] Li G, Zhang Y C, Li Y, Wang X Y, Zhang J, Wang J M, Zhang T C 2006 Appl. Opt. 45 7628
[18] Li L P, Liu T, Li G, Zhang T C, Wang J M 2004 Acta Phys. Sin. 53 1041 (in Chinese) [李利平, 刘涛, 李刚, 张天才, 王军民 2004 物理学报 53 1041]
-
[1] McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992
[2] Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901
[3] Kimble H J 2003 Phys. Rev. Lett. 90 249801
[4] Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nature Photonics 5 628
[5] Bao X H, Reingruber A, Dietrich P, Rui J, Duck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nature Physics 8 517
[6] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203
[7] Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447
[8] Pinkse P W H, Fischer T, Maunz P, Rempe G 2000 Nature 404 365
[9] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804
[10] Liu T, Zhang T C, Wang J M, Pen K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 物理学报 53 1346]
[11] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J, Kimble H J 2004 Phys. Rev. Lett. 93 233603
[12] DeVoe R G, Fabre C, Jungmann K, Hoffnagle J, Brewer R G 1988 Phys. Rev. A 37 1802(R)
[13] Lichten W 1985 J. Opt. Soc. Am. A 2 1869
[14] Layer H P, Deslattes R D, Schewietzer W G 1976 Appl. Opt. 15 734
[15] Hood C J, Kimble H J, Ye J 2001 Phys. Rev. A 64 033804
[16] Rempe G, Thompson R J, Kimble H J 1992 Opt. lett. 17 363
[17] Li G, Zhang Y C, Li Y, Wang X Y, Zhang J, Wang J M, Zhang T C 2006 Appl. Opt. 45 7628
[18] Li L P, Liu T, Li G, Zhang T C, Wang J M 2004 Acta Phys. Sin. 53 1041 (in Chinese) [李利平, 刘涛, 李刚, 张天才, 王军民 2004 物理学报 53 1041]
计量
- 文章访问数: 8537
- PDF下载量: 553
- 被引次数: 0