|
|
耦合系统的朗之万动力学产生法 |
邓琪敏, 邹亚中, 包景东 |
北京师范大学物理学系, 北京 100875 |
The Langevin dynamics approach to generate solid interaction system |
Deng Qi-Min, Zou Ya-Zhong, Bao Jing-Dong |
Department of Physics, Beijing Normal University, Beijing 100875, China |
|
摘要: 提出一种朗之万动力学方法获取处于热平衡态耦合系统内部振子坐标,数值模拟了单端固定简谐振子链的时间演化行为,并将其平衡性质与解析解进行了比较. 结果表明了朗之万动力学方法的有效性. 推广应用于非简谐四次方型耦合系统,模拟得到振子的四次方均坐标,与理论值验证;以模拟结果作为样本点计算哈密顿量,其能量分布与Boltzmann分布相符.
关键词:
耦合振子链
Langevin方程
稳态分布
|
|
Abstract: We have studied two probability potentials of a collinear oscillator atom chain and developed a Langevin dynamics approach for calculation. In the case of the harmonic chains, results of the Monte Carlo simulations are compared with the analytical solutions to verify the validity of this approach. In the case of 4-times coupled oscillator chains, the results of numerical simulations are used to the calculation of Hamiltonian. Then the system's energy distribution and the Maxwell-Boltzmann distribution are compared, and found to be in agreement with each other.
Keywords:
collinear oscillator chain
Langevin equation
equilibrium distribution
|
收稿日期: 2014-03-03
|
|
基金: 国家自然科学基金(批准号:11175021)和高等学校博士学科点专项科研基金(批准号:20120003110025)资助的课题. |
References
[1] | Zwanzig R W 1960 J. Chem. Phys. 32 1173
|
[2] | McCarroll B, Ehrlich G 1963 J. Chem. Phys. 38 523
|
[3] | Goodman F 1962 J. Chem. Phys. Solid 23 1269
|
[4] | Adelman S A, Brooks C L 1982 J. Chem. Phys. 86 1511
|
[5] | Adelman S A, Doll J D 1974 J. Chem. Phys. 61 4242
|
[6] | Doll J D, Myers L E 1975 J. Chem. Phys. 63 4908
|
[7] | Martens S, Hennig D, Fugmann S, Schimansky-Geier L 2008 Phys. Rev. E 78 041121
|
[8] | Lee M H, Hong J 1985 Phys. Rev. B 32 7734
|
[9] | Tully J C 1980 J. Chem. Phys. 73 1975
|
[10] | Tasic U, Scott Day B, Yan T, Morris J R, Hase W L 2008 J. Phys. Chem. C 112 476
|
[11] | Peng Y X, Liu L, Gao Z, Li S, Mazyar O. A, Hase W L, Yan T Y 2008 J. Phys. Chem. C 112 20340
|
[12] | Nagard M B, Andersson P U, Markovic N, Petterssona J B C 1998 J. Chem. Phys. 109 10339
|
[13] | Shiraishi M, Takenobu T, Ata M 2003 Chem. Phys. Lett. 367 633
|
[14] | Liu J, Wang H Y, Bao J D 2013 Chin. Phys. B 22 060513
|
[15] | Deng W H 2009 Phys. Rev. E 79 011112
|
[16] | Bao J D 2009 Stochastic Simulation Method of Classical and Quantum Dissipative Systems (Beijing: Science Press) p38 (in Chinese)[包景东2009经典和量子耗散系统的随机模拟方法(北京: 科学出版社)第38页]
|
[1]
|
谢文贤, 李东平, 许鹏飞, 蔡力, 靳艳飞. 具有固有频率涨落的记忆阻尼线性系统的随机共振[J]. 物理学报, 2014, 63(10): 100502.
|
[2]
|
钟苏川, 高仕龙, 韦鹍, 马洪. 线性过阻尼分数阶Langevin方程的共振行为[J]. 物理学报, 2012, 61(17): 170501.
|
[3]
|
高仕龙, 钟苏川, 韦鹍, 马洪. 过阻尼分数阶Langevin方程及其随机共振[J]. 物理学报, 2012, 61(10): 100502.
|
[4]
|
上官丹骅, 吕艳, 包景东. 强束缚势中Lévy飞行的非Gibbs-Boltzmann统计[J]. 物理学报, 2010, 59(11): 7607-7611.
|
[5]
|
谢文贤 李东平 许鹏飞 蔡力 靳艳飞. 具有固有频率涨落的记忆阻尼线性系统的随机共振[J]. 物理学报, , (): 00.
|
[6]
|
邓琪敏 邹亚中 包景东. 耦合系统的朗之万动力学产生法[J]. 物理学报, , (): 00.
|
|
|
|