搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压耦合高功率脉冲磁控溅射的增强放电效应

吴忠振 田修波 潘锋 Ricky K. Y. Fu 朱剑豪

引用本文:
Citation:

高压耦合高功率脉冲磁控溅射的增强放电效应

吴忠振, 田修波, 潘锋, Ricky K. Y. Fu, 朱剑豪

Enhanced discharge of high power pulsed magnetron sputtering coupling with high voltage

Wu Zhong-Zhen, Tian Xiu-Bo, Pan Feng, Ricky K. Y. Fu, Paul K. Chu
PDF
导出引用
  • 等离子体源离子注入与沉积技术作为一种可生产高结合力、高致密度涂层的真空镀膜技术,具有广阔的应用前景,尤其适用于高载荷工况下服役的功能涂层制备. 该技术中金属等离子体源是关键,而现有的脉冲阴极弧源结构复杂,且由于伴随金属液滴而需要增加过滤装置. 本文研究了另一种简单结构的金属等离子体源备选-高功率脉冲磁控溅射源(HPPMS)的放电特性,采用等离子体发射光谱仪探索了不同的耦合高压对HPPMS放电靶电流特性和等离子体特性的作用. 发现耦合高压对HPPMS放电有明显的促进作用,相同靶电压下的放电强度大幅增加,相对于金属放电,耦合高压对气体放电的促进作用更加明显,但在自溅射为主的高压放电阶段对金属放电的促进作用明显增强. 讨论了耦合高压对HPPMS放电的增强机制,发现耦合高压自辉光放电、耦合高压和HPPMS电压构成双向负压形成的空心阴极效应,以及耦合高压鞘层改善的双极扩散效应都对HPPMS放电的增强有明显作用.
    Plasma source ion implantation and deposition, as an effective technology to produce functional coatings with high adhesion and density, possesses the wide application prospect, especially in the deposition of coatings that work in high loading service conditions. The key component of this technology is the metal plasma source, which is now based on pulsed cathodic arc with complex source structure and magnetic filtration because of the macro-droplets in the ion flux. In this paper, we present another metal plasma source, high power pulsed magnetron sputtering (HPPMS), and investigate the discharge characteristics at different coupling high-voltages by optical emission spectroscopy. The results show that significant improvements are found in the discharge target current and main particles in the plasma. The improvement in gas discharge by the coupling high-voltage is greater than in metal discharge which could increase obviously in the self-sputtering stage with higher target voltage discharge. Last but not least, in this paper we discuss the discharge enhancing mechanism of coupling high-voltage. It is found that the self-excited glow discharge of coupling high-voltage, the hollow-cathodic effect induced by face-to-face negative voltages of HPPMS and coupling high-voltage, and the enhanced ambipolar diffusion of the coupling high-voltage can all play a considerable role in HPPMS discharge.
    • 基金项目: 国家自然科学基金(批准号:51301004,U1330110)和深圳市科技计划(批准号:SGLH20120928095706623,JCYJ20120614150338154,CXZZ20120829172325895)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51301004, U1330110) and the Shenzhen Science and Technology Research Grant, China (Grant Nos. SGLH20120928095706623, JCYJ20120614150338154, CXZZ20120829172325895).
    [1]

    Conrad J R, Castagna T, Am B 1986 Phys. Soc. 31 1479

    [2]

    Li X, Tang Z A, Ma G J, Wu Z M, Deng X L 2003 Chin. Phys. Lett. 20 692

    [3]

    Man B Y, Zhang Y H, L G H, Liu A H, Zhang Q G, Guzman L, Adami M, Miotello A 2005 Acta Phys. Sin. 54 837(in Chinese)[满宝元, 张运海, 吕国华, 刘爱华, 张庆刚, Guzman L, Adami M, Miotello A 2005 物理学报 54 837]

    [4]

    Bilek M M M, McKenziea D R, Tarranta R N, Limb S H M, McCulloch D G 2002 Surf. Coat. Technol. 156 136

    [5]

    Zhang G L, Wang J L, Liu Y F, Liu C Z, Yang S Z 2004 Chin. Phys. 13 1309

    [6]

    Liu J, Liu B W, Xia Y, Li C B, Liu S 2012 Acta Phys. Sin. 61 148102(in Chinese)[刘杰, 刘邦武, 夏洋, 李超波, 刘肃 2012 物理学报 61 148102]

    [7]

    Anders A 1997 Surf. Coat. Technol. 93 158

    [8]

    Anders S, Anders A, Dickinson M R, MacGilt R A, Brown I G 1996 Proc. of XVⅡth Int. Symp. Disch. El. Insul. Vacuum Berkeley, USA, July 2-6, 1996 p904

    [9]

    Kouznetsov V, Maca'k K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [10]

    Bohlmark J, Gudmundsson J T, Alami J, Latteman M, Helmersson U 2005 IEEE Trans. Plasma Sci. 33 346

    [11]

    Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A P, Gonzalvo Y A, Brenning N, Helmersson U 2006 Thin Solid Films 515 1522

    [12]

    Horwat D, Anders A 2008 J. Phys. D: Appl. Phys. 41 135210

    [13]

    Ehiasarian A P, Gonzalvo Y A, Whitmore T D 2007 Plasma Processes Polym. 4 S309

    [14]

    Tian X B, Wu Z Z, Gong C Z 2010 China Patent 201010213894.4 2010-06 (in Chinese)[田修波, 吴忠振, 巩春志 2010 中国专利 201010213894.4 2010-06]

    [15]

    Wu Z Z, Tian X B, Shi J W, Gong C Z, Yang S Q, Chu P K 2011 Rev. Sci. Instrum. 69 033511

    [16]

    Wu Z Z, Tian X B, Gong C Z, Yang S Q 2013 Rare Metal Mater. Eng. 42 405 (in Chinese)[吴忠振, 田修波, 巩春志, 杨士勤2013 稀有金属材料与工程 42 405]

    [17]

    Wu Z Z, Tian X B, Wang Z M, Gong C Z, Yang S Q, Tan C M 2011 Appl. Surf. Sci. 258 242

    [18]

    Duan W Z 2010 M.S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [19]

    Tian X B, Wu Z Z, Shi J W, Li X P, Gong C Z, Yang S Q 2010 Chin. Vac. 47 44 (in Chinese)[田修波, 吴忠振, 石经纬, 李希平, 巩春志, 杨士勤 2010 真空 47 44]

    [20]

    Carsten E, George C, Chan G, Buscher W, Hieftje G M 2008 Spectrochim. Acta B 7 619

    [21]

    Duan W Z 2011 M.S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[段伟赞 2011 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [22]

    Kirsch B, Hanamura S, Wineforder J D 1984 Spectrochim. Acta B 39 955

    [23]

    Poucques L D, Imbert J C, Boisse-Laporte C, Bretagne J, Ganciu M, Teul-Gay L, Touzeau M 2006 Czech. J. Phys. 56 B1300

    [24]

    Kadlec S 2007 Plasma Processes Polym. 4 S419

    [25]

    Gong C Z, Zhu Z T, Shi J W, Yang S Q, Tian X B, Chu P K 2010 Surf. Coat. Technol. 204 2996

    [26]

    Oks E, Anders A 2010 Rev. Sci. Instrum. 81 02B306

    [27]

    Wu Z Z, Tian X B, Wang Z M, Gong C Z, Yang S Q 2011 Chin. J. Vac. Sci. Technol. 31 459(in Chinese)[吴忠振, 田修波, 王泽明, 巩春志, 杨士勤 2011 真空科学与技术学报 31 459]

    [28]

    Mu Z X, Mu X D, Wang C, Jia L, Dong C 2011 Acta Phys. Sin. 60 015204(in Chinese)[牟宗信, 牟晓东, 王春, 贾莉, 董闯 2011 物理学报 60 015204]

    [29]

    Wang Z M 2010 M.S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[王泽明 2011 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [30]

    Anders A, Andersson J Ehiasarian A P 2007 J. Appl. Phys. 102 113303

    [31]

    Anders A 2010 J. Vac. Sci. Technol. A 28 783

    [32]

    Wu Z Z, Tian X B, Wei Y Q, Gong C Z, Yang S Q, Pan F, Chu P K 2013 Surf. Coat. Technol. 236 320

  • [1]

    Conrad J R, Castagna T, Am B 1986 Phys. Soc. 31 1479

    [2]

    Li X, Tang Z A, Ma G J, Wu Z M, Deng X L 2003 Chin. Phys. Lett. 20 692

    [3]

    Man B Y, Zhang Y H, L G H, Liu A H, Zhang Q G, Guzman L, Adami M, Miotello A 2005 Acta Phys. Sin. 54 837(in Chinese)[满宝元, 张运海, 吕国华, 刘爱华, 张庆刚, Guzman L, Adami M, Miotello A 2005 物理学报 54 837]

    [4]

    Bilek M M M, McKenziea D R, Tarranta R N, Limb S H M, McCulloch D G 2002 Surf. Coat. Technol. 156 136

    [5]

    Zhang G L, Wang J L, Liu Y F, Liu C Z, Yang S Z 2004 Chin. Phys. 13 1309

    [6]

    Liu J, Liu B W, Xia Y, Li C B, Liu S 2012 Acta Phys. Sin. 61 148102(in Chinese)[刘杰, 刘邦武, 夏洋, 李超波, 刘肃 2012 物理学报 61 148102]

    [7]

    Anders A 1997 Surf. Coat. Technol. 93 158

    [8]

    Anders S, Anders A, Dickinson M R, MacGilt R A, Brown I G 1996 Proc. of XVⅡth Int. Symp. Disch. El. Insul. Vacuum Berkeley, USA, July 2-6, 1996 p904

    [9]

    Kouznetsov V, Maca'k K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [10]

    Bohlmark J, Gudmundsson J T, Alami J, Latteman M, Helmersson U 2005 IEEE Trans. Plasma Sci. 33 346

    [11]

    Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A P, Gonzalvo Y A, Brenning N, Helmersson U 2006 Thin Solid Films 515 1522

    [12]

    Horwat D, Anders A 2008 J. Phys. D: Appl. Phys. 41 135210

    [13]

    Ehiasarian A P, Gonzalvo Y A, Whitmore T D 2007 Plasma Processes Polym. 4 S309

    [14]

    Tian X B, Wu Z Z, Gong C Z 2010 China Patent 201010213894.4 2010-06 (in Chinese)[田修波, 吴忠振, 巩春志 2010 中国专利 201010213894.4 2010-06]

    [15]

    Wu Z Z, Tian X B, Shi J W, Gong C Z, Yang S Q, Chu P K 2011 Rev. Sci. Instrum. 69 033511

    [16]

    Wu Z Z, Tian X B, Gong C Z, Yang S Q 2013 Rare Metal Mater. Eng. 42 405 (in Chinese)[吴忠振, 田修波, 巩春志, 杨士勤2013 稀有金属材料与工程 42 405]

    [17]

    Wu Z Z, Tian X B, Wang Z M, Gong C Z, Yang S Q, Tan C M 2011 Appl. Surf. Sci. 258 242

    [18]

    Duan W Z 2010 M.S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [19]

    Tian X B, Wu Z Z, Shi J W, Li X P, Gong C Z, Yang S Q 2010 Chin. Vac. 47 44 (in Chinese)[田修波, 吴忠振, 石经纬, 李希平, 巩春志, 杨士勤 2010 真空 47 44]

    [20]

    Carsten E, George C, Chan G, Buscher W, Hieftje G M 2008 Spectrochim. Acta B 7 619

    [21]

    Duan W Z 2011 M.S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[段伟赞 2011 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [22]

    Kirsch B, Hanamura S, Wineforder J D 1984 Spectrochim. Acta B 39 955

    [23]

    Poucques L D, Imbert J C, Boisse-Laporte C, Bretagne J, Ganciu M, Teul-Gay L, Touzeau M 2006 Czech. J. Phys. 56 B1300

    [24]

    Kadlec S 2007 Plasma Processes Polym. 4 S419

    [25]

    Gong C Z, Zhu Z T, Shi J W, Yang S Q, Tian X B, Chu P K 2010 Surf. Coat. Technol. 204 2996

    [26]

    Oks E, Anders A 2010 Rev. Sci. Instrum. 81 02B306

    [27]

    Wu Z Z, Tian X B, Wang Z M, Gong C Z, Yang S Q 2011 Chin. J. Vac. Sci. Technol. 31 459(in Chinese)[吴忠振, 田修波, 王泽明, 巩春志, 杨士勤 2011 真空科学与技术学报 31 459]

    [28]

    Mu Z X, Mu X D, Wang C, Jia L, Dong C 2011 Acta Phys. Sin. 60 015204(in Chinese)[牟宗信, 牟晓东, 王春, 贾莉, 董闯 2011 物理学报 60 015204]

    [29]

    Wang Z M 2010 M.S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[王泽明 2011 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [30]

    Anders A, Andersson J Ehiasarian A P 2007 J. Appl. Phys. 102 113303

    [31]

    Anders A 2010 J. Vac. Sci. Technol. A 28 783

    [32]

    Wu Z Z, Tian X B, Wei Y Q, Gong C Z, Yang S Q, Pan F, Chu P K 2013 Surf. Coat. Technol. 236 320

  • [1] 高剑英, 李玉阁, 雷明凯. 深振荡磁控溅射放电等离子体脉冲特性. 物理学报, 2024, 73(16): 165201. doi: 10.7498/aps.73.20240364
    [2] 李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 筒形溅射阴极的磁场优化及其高功率放电特性研究. 物理学报, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [3] 陈畅子, 马东林, 李延涛, 冷永祥. 高功率脉冲磁控溅射钛靶材的放电模型及等离子特性. 物理学报, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [4] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达. 飞秒激光引导高压放电下的SF6等离子体时间分辨光谱特性. 物理学报, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [5] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [6] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能. 物理学报, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [7] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [8] 崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋. 筒内高功率脉冲磁控放电的电磁控制与优化. 物理学报, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [9] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性. 物理学报, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [10] 吴忠振, 田修波, 李春伟, Ricky K. Y. Fu, 潘锋, 朱剑豪. 高功率脉冲磁控溅射的阶段性放电特征. 物理学报, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [11] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [12] 陈根余, 邓辉, 徐建波, 李宗根, 张玲. 脉冲光纤激光修锐青铜金刚石砂轮等离子体特性研究. 物理学报, 2013, 62(14): 144204. doi: 10.7498/aps.62.144204
    [13] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [14] 刘院省, 刘世炳, 宋海英, 何润. 脉冲激光-铜靶等离子体产生及其演化过程的瞬态光谱研究. 物理学报, 2012, 61(4): 044204. doi: 10.7498/aps.61.044204
    [15] 牟宗信, 牟晓东, 王春, 贾莉, 董闯. 直流电源耦合高功率脉冲非平衡磁控溅射电离特性. 物理学报, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [16] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化. 物理学报, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [17] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [18] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [19] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [20] 陈 钢, 潘佰良, 姚志欣. 气体脉冲放电等离子体阻抗的参量研究. 物理学报, 2003, 52(7): 1635-1639. doi: 10.7498/aps.52.1635
计量
  • 文章访问数:  7611
  • PDF下载量:  690
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-25
  • 修回日期:  2014-05-13
  • 刊出日期:  2014-09-05

/

返回文章
返回