引用本文: |
Citation: |
计量
- 文章访问数: 3283
- PDF下载量: 565
- 被引次数: 0
引用本文: |
Citation: |
摘要: 提出了一种求解任意维数非线性模型的“M?bious”变换下不变的渐进展开方法,并可同时获得许多新的与原模型有着相同维数的Painlevé可积模型.取(2+1)维KdV-Burgers(KdVB)方程和Kadomtsev-Petviashvili(KP)方程为具体例子,获得了一些新的具有Painlevé性质的高维“M?bious”变换下不变的方程及原模型的近似解.在某些特殊情况下,某些近似解可以成为精确解
Abstract: A “M?bius” invariant asymptotic expansion approach to solve any nonlinear integrable and nonintegrable models with any dimension is proposed. Many new Painlevé integrable models with the same dimension can be obtained at the same time. Taking the (2+1)-dimensional KdV-Burgers(KdVB) equation, (3+1)-dimensional Kudomtsev-Petviashvili (KP) equation as concrete examples, we obtain some new higher dimensional “M?bius” invariant models with Painlevé property and the approximate solutions of these models. In some special case, some approximate solutions become exact.