-
导出了推广的多分量费米型量子可导非线性Schrdinger模型的哈密顿量.利用代数Bethe a nsatz方法,找到了此模型的量子monodromy矩阵所满足的量子Yang-Baxter方程,并证明了 其可积性.
引用本文: |
Citation: |
计量
- 文章访问数: 3135
- PDF下载量: 498
- 被引次数: 0
引用本文: |
Citation: |
摘要: 导出了推广的多分量费米型量子可导非线性Schrdinger模型的哈密顿量.利用代数Bethe a nsatz方法,找到了此模型的量子monodromy矩阵所满足的量子Yang-Baxter方程,并证明了 其可积性.
Abstract: With the help of Lax operator, the monodromy matrix is constructed, and the Hamiltonian is obtained. By using algebraic Bethe ansatz method, it has been shown t hat the monodromy matrix satisfies the Yang-Baxter equation on both a finite in terval and an infinite interval. So the integrability of this model is proved.