搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平衡热力学中传热过程熵产表达式的修正

董源 过增元

非平衡热力学中传热过程熵产表达式的修正

董源, 过增元
PDF
导出引用
  • 熵产是非平衡热力学中的核心物理量,传统上表示为广义力(驱动力)与广义流的乘积.这种表达存在两方面缺陷:一是广义力与广义流的拆分具有任意性;更重要的是,以其计算热波传递时熵产可以为负值,从而违反热力学第二定律.本文基于热质理论分析表明,传热过程的熵产实质上是由热质流体的热质能耗散引起的,所以熵产中的力不是驱动力而是阻力,并且具有力的量纲.由此提出的熵产修正表达式,不仅在计算热波传递过程中熵产恒为正值,与扩展不可逆热力学中的熵产表达式一致,而且不存在力和流拆分的任意性.
    • 基金项目: 国家自然科学基金(批准号: 51076080, 51136001)和清华大学自主科研计划资助的课题.
    [1]

    Kreuzer H J 1981 Nonequilibrium Thermodynamics and Its Statistical Foundations (New York: Oxford University Press)

    [2]

    Jou D, Casas-Vazquez J, Lebon G 2010 Extended Irreversible Thermodynamics (4th Ed) (New York: Springer)

    [3]

    Groot S R, Mazur P 1984 Non-Equilibrium Thermodynamics (New York: Dover Publications)

    [4]

    Zeng D L 1991 Engineering Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese) [曾丹苓 1991 工程非平衡热动力学 (北京: 科学出版社)]

    [5]

    Grandy Jr W T 2008 Entropy and the Time Evolution of Macroscopic Systems (New York: Oxford University Press)

    [6]

    Onsager L 1931 Phys. Rev. 37 405

    [7]

    Casimir H B G 1945 Rev. Mod. Phys. 17 343

    [8]

    Glansdorf P, Prigogine I 1971 Thermodynamic Theory of Structure, Stability and Fluctuations (New York: Wiley)

    [9]

    Lebon G, Casas-Vazquez J, Jou D 2008 Understanding Non- Equilibrium Thermodynamics: Foundations, Applications, Frontiers (Berlin: Springer-Verlag)

    [10]

    Stritzker B, Pospieszczyk A, Tagle J A 1981 Phys. Rev. Lett. 47 356

    [11]

    Torii S, Yang W J 2005 Int. J. Heat Mass Trans. 48 537

    [12]

    Guo Z Y, Xu Y S 1995 J. Electron. Packaging 117 174

    [13]

    Cattaneo C 1948 Atti. Sem. Mat. Fis. Univ. Modena 3 83

    [14]

    Vernotte P 1958 C. R. Acad. Sci 246 3154

    [15]

    Morse P M, Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill)

    [16]

    Tzou D Y 1989 J. Heat Trans. 111 232

    [17]

    Tzou D Y 1992 Thermal shock phenomena under high-rate response in solids in: Tien C L (Ed) Annual Review of Heat Transfer IV (Whashington DC: Hemisphere) Chapter 3 pp 111–185

    [18]

    Tzou D Y 1997 Macro- to Microscale Heat Transfer: The Lagging Behavior (Whashington DC: Taylor & Francis)

    [19]

    Criado-Sancho M, Llebot J E 1993 Phys. Rev. E 47 4104

    [20]

    Al-Nimr M A, Naji M, Arbaci V S 2000 J. Heat Trans. 122 217

    [21]

    Jou D, Casas-Vazquez J, Lebon G 1999 Rep. Pro. Phys. 62 1035

    [22]

    Müller I 1985 Thermodynamics (London: Pitman)

    [23]

    Sieniutycz S, Salamon P 1992 Extended Thermodynamic System (New York: Taylor and Francis)

    [24]

    Barletta A, Zanchini E 1997 Int. J. Heat Mass Trans. 40 1007

    [25]

    Jou D, Casas-Vazquez J, Lebon G 2008 Proceedings of the Estonian Academy of Sciences 57 118

    [26]

    Cao B Y, Guo Z Y 2007 J. Appl. Phys. 102 53503

    [27]

    Guo Z Y, Hou Q W 2010 ASME J. Heat Trans. 132 072403

    [28]

    Wang H D, Cao B Y, Guo Z Y 2010 Int. J. Heat Mass Trans. 53 1796

    [29]

    Song B,Wu J, Guo Z Y 2010 Acta Phys. Sin. 59 7129 (in Chinese) [宋柏,吴晶,过增元 2010 物理学报 59 7129]

    [30]

    Guo Z Y, Cao B Y 2008 Acta Phys. Sin. 57 4273 (in Chinese) [过增元,曹炳阳 2008 物理学报 57 4273]

    [31]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文,曹炳阳,过增元 2009 物理学报 58 7809]

    [32]

    Guo Z Y, Cao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin. 56 3306 (in Chinese) [过增元,曹炳阳,朱宏晔,张清光 2007 物理学报 56 3306]

  • [1]

    Kreuzer H J 1981 Nonequilibrium Thermodynamics and Its Statistical Foundations (New York: Oxford University Press)

    [2]

    Jou D, Casas-Vazquez J, Lebon G 2010 Extended Irreversible Thermodynamics (4th Ed) (New York: Springer)

    [3]

    Groot S R, Mazur P 1984 Non-Equilibrium Thermodynamics (New York: Dover Publications)

    [4]

    Zeng D L 1991 Engineering Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese) [曾丹苓 1991 工程非平衡热动力学 (北京: 科学出版社)]

    [5]

    Grandy Jr W T 2008 Entropy and the Time Evolution of Macroscopic Systems (New York: Oxford University Press)

    [6]

    Onsager L 1931 Phys. Rev. 37 405

    [7]

    Casimir H B G 1945 Rev. Mod. Phys. 17 343

    [8]

    Glansdorf P, Prigogine I 1971 Thermodynamic Theory of Structure, Stability and Fluctuations (New York: Wiley)

    [9]

    Lebon G, Casas-Vazquez J, Jou D 2008 Understanding Non- Equilibrium Thermodynamics: Foundations, Applications, Frontiers (Berlin: Springer-Verlag)

    [10]

    Stritzker B, Pospieszczyk A, Tagle J A 1981 Phys. Rev. Lett. 47 356

    [11]

    Torii S, Yang W J 2005 Int. J. Heat Mass Trans. 48 537

    [12]

    Guo Z Y, Xu Y S 1995 J. Electron. Packaging 117 174

    [13]

    Cattaneo C 1948 Atti. Sem. Mat. Fis. Univ. Modena 3 83

    [14]

    Vernotte P 1958 C. R. Acad. Sci 246 3154

    [15]

    Morse P M, Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill)

    [16]

    Tzou D Y 1989 J. Heat Trans. 111 232

    [17]

    Tzou D Y 1992 Thermal shock phenomena under high-rate response in solids in: Tien C L (Ed) Annual Review of Heat Transfer IV (Whashington DC: Hemisphere) Chapter 3 pp 111–185

    [18]

    Tzou D Y 1997 Macro- to Microscale Heat Transfer: The Lagging Behavior (Whashington DC: Taylor & Francis)

    [19]

    Criado-Sancho M, Llebot J E 1993 Phys. Rev. E 47 4104

    [20]

    Al-Nimr M A, Naji M, Arbaci V S 2000 J. Heat Trans. 122 217

    [21]

    Jou D, Casas-Vazquez J, Lebon G 1999 Rep. Pro. Phys. 62 1035

    [22]

    Müller I 1985 Thermodynamics (London: Pitman)

    [23]

    Sieniutycz S, Salamon P 1992 Extended Thermodynamic System (New York: Taylor and Francis)

    [24]

    Barletta A, Zanchini E 1997 Int. J. Heat Mass Trans. 40 1007

    [25]

    Jou D, Casas-Vazquez J, Lebon G 2008 Proceedings of the Estonian Academy of Sciences 57 118

    [26]

    Cao B Y, Guo Z Y 2007 J. Appl. Phys. 102 53503

    [27]

    Guo Z Y, Hou Q W 2010 ASME J. Heat Trans. 132 072403

    [28]

    Wang H D, Cao B Y, Guo Z Y 2010 Int. J. Heat Mass Trans. 53 1796

    [29]

    Song B,Wu J, Guo Z Y 2010 Acta Phys. Sin. 59 7129 (in Chinese) [宋柏,吴晶,过增元 2010 物理学报 59 7129]

    [30]

    Guo Z Y, Cao B Y 2008 Acta Phys. Sin. 57 4273 (in Chinese) [过增元,曹炳阳 2008 物理学报 57 4273]

    [31]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文,曹炳阳,过增元 2009 物理学报 58 7809]

    [32]

    Guo Z Y, Cao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin. 56 3306 (in Chinese) [过增元,曹炳阳,朱宏晔,张清光 2007 物理学报 56 3306]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  3153
  • PDF下载量:  845
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-09
  • 修回日期:  2011-05-18
  • 刊出日期:  2012-03-15

非平衡热力学中传热过程熵产表达式的修正

  • 1. 清华大学航天航空学院热科学与动力工程教育部重点实验室, 北京 100084
    基金项目: 

    国家自然科学基金(批准号: 51076080, 51136001)和清华大学自主科研计划资助的课题.

摘要: 熵产是非平衡热力学中的核心物理量,传统上表示为广义力(驱动力)与广义流的乘积.这种表达存在两方面缺陷:一是广义力与广义流的拆分具有任意性;更重要的是,以其计算热波传递时熵产可以为负值,从而违反热力学第二定律.本文基于热质理论分析表明,传热过程的熵产实质上是由热质流体的热质能耗散引起的,所以熵产中的力不是驱动力而是阻力,并且具有力的量纲.由此提出的熵产修正表达式,不仅在计算热波传递过程中熵产恒为正值,与扩展不可逆热力学中的熵产表达式一致,而且不存在力和流拆分的任意性.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回