搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜的制备与研究

李志成 刘斌 张荣 张曌 陶涛 谢自力 陈鹏 江若琏 郑有炓 姬小利

引用本文:
Citation:

紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜的制备与研究

李志成, 刘斌, 张荣, 张曌, 陶涛, 谢自力, 陈鹏, 江若琏, 郑有炓, 姬小利

Design and fabrication of SiO2/Si3N4 dielectric distributed Bragg reflectors for ultraviolet optoelectronic applications

Li Zhi-Cheng, Liu Bin, Zhang Rong, Zhang Zhao, Tao Tao, Xie Zi-Li, Chen Peng, Jiang Ruo-Lian, Zheng You-Dou, Ji Xiao-Li
PDF
导出引用
  • 采用光学传递矩阵方法设计了紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜, 并利用等离子体增强化学气相沉积技术在蓝宝石(0001)衬底上制备了SiO2/Si3N4介质膜分布式布拉格反射镜. 光反射测试表明, 样品反射谱的峰值波长仅与理论模拟谱线相差10 nm, 并随着反射镜周期数的增加而蓝移. 由于SiO2与Si3N4具有相对较大的折射率比, 因而制备的周期数为13的样品反射谱的峰值反射率就已大于99%. 样品反射谱的中心波长为333 nm, 谱峰的半高宽为58 nm. 样品截面的扫描电子显微镜和表面的原子力显微镜测量结果表明, 样品反射谱的中心波长蓝移是由子层的层厚和界面粗糙度的变化引起的. X射线反射谱表明,子层界面过渡层对于反射率的影响较小, 并且SiO2膜的质量比Si3N4差, 也是造成反射率低于理论值的原因之一.
    In this paper, we design a SiO2/Si3N4 dielectric distributed Bragg reflector (DDBR) by the transfer-matrix method, which is grown by plasma-enhanced chemical vapor deposition on sapphire (0001). There exists a slight difference between theoretical and experimental results in peak wavelength (~ 10 nm). The peak wavelength is blue shifted with the number of DDBR pairs increasing. The 13-pair DDBR provides a 58 nm wide stop band centered at 333 nm with a maximal reflectivity of higher than 99%, as the refractive index ratio of Si3N4 to SiO2 is relatively high. It is proved by the scanning electron microscope and atomic force microscope measurements that the variations of thickness and roughness of Si3N4 layer with respect to SiO2 layer during growth contribute to the blue shift of peak wavelength. The X-ray reflectivity measurements indicate that the interfacial degradation of the samples has little effect on the maximum reflectivity, and the relatively poor quality of SiO2 compared with Si3N4 may be one of the reasons that cause the difference between the measurements and simulations.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB301900)、国家自然科学基金(批准号: 60990311, 60906025, 60936004, 10904100, 61176063)、 江苏省高等学校自然科学基金(批准号: BK2010385, BK2010178)、 霍英东教育基金(批准号: 122028)、 中央高等学校基本科研基金(批准号: 1105021008)和 高等学校博士学科点专项科研基金(批准号: 20090091120020)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB301900), the National Natural Science Foundation of China (Grant Nos. 60990311, 60906025, 60936004, 10904100, 61176063), the Natural Science Foundation of Institution of Higher Education of Jiangsu Province, China (Grant Nos. BK2010385, BK2010178), the Fok Ying-Tung Education Foundation, China (Grant No. 122028), the Fundamental Scientific Research Foundation for the Central Universities of China (Grant No. 1105021008), and the Specialized Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20090091120020).
    [1]

    Kishino K, Ünl? M S, Chyi J I, Reed J, Arsenault L, Morkoc H 1991 IEEE J. Quantum Electron. 27 2025

    [2]

    Ünl? M S, Strite S 1995 J. Appl. Phys. 78 607

    [3]

    Feltin E, Carlin J F, Dorsaz J, Christmann G, Butt? R, La黦t M, Ilegems M, Grandjean N 2006 Appl. Phys. Lett. 88 051108

    [4]

    Mitrofanov O, Schmult S, Manfra M J, Siegrist T, Weimann N G, Sergent A M, Molnar R J 2006 Appl. Phys. Lett. 88 171101

    [5]

    Li T, Carrano J C, Eiting C J, Grudowski P A, Lambert D J H, Kwon H K, Dupuis R D, Campbell J C, Tober R T 2001 Fiber Integ. Opt. 20 125

    [6]

    Kishino K, Yonemaru M, Kikuchi A, Toyoura Y 2001 Phys. Stat. Sol. A 188 321

    [7]

    Mitrofanov O, Schmult S, Manfra M J, Siegrist T, Weimann N G, Sergent A M 2006 Appl. Phys. Lett. 88 171101

    [8]

    Ji X L, Jiang R L, Liu B, Xie Z L, Zhou J J, Li L, Han P, Zhang R, Zheng Y D, Zheng J G 2008 Phys. Stat. Sol. A 205 1572

    [9]

    Ji X L, Jiang R L, Xie Z L, Liu B, Zhou J J, Li L, Han P, Zhang R, Zheng Y D, Gong H M 2007 Chin. Phys. Lett. 24 1735

    [10]

    Liu B, Zhang R, Zheng J G, Ji X L, Fu D Y, Xie Z L, Chen D J, Chen P, Jiang R L, Zheng Y D 2011 Appl. Phys. Lett. 98 261916

    [11]

    Stephens D J, He S S, Lucovsky G, Mikkelsen H, Leo K, Kurz H 1993 J. Vac. Sci. Technol. A 11 4

    [12]

    Feltin E, Christmann G, Dorsaz J, Castiglia A, Carlin J F, Butte R, Grandjean N, Christopoulos S, Baldassarri G, Hogersthal H V, Grundy A J D, Lagoudakis P G, Baumberg J J 2007 Electron. Lett. 43 17

    [13]

    Palik E D 1985 Handbook of Optical Constants of Solids (San Diego: Academic Press) pp719---774

    [14]

    Macleod H A 1986 Thin Film Optical Filters (3rd ed) (London: Institute of Physics Publishing) pp12---186

    [15]

    Tanner B K, Bowen D K 1992 J. Cryst. Growth 126 1

    [16]

    Nevot L, Croce P 1980 Revue Phys. Appl. 15 761

    [17]

    Sinha S K, Sirota E B, Garoff S, Stanley H B 1988 Phys. Rev. B 38 2297

    [18]

    Parrat L G 1954 Phys. Rev. 95 359

    [19]

    Bevington P R, Robinson D K 1969 Data Reduction and Error Analysis for the Physical Science (3rd ed) (New York: McGraw-Hill) pp142---174

    [20]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1986 The Art of Scientific Computing (3rd ed) (New York: Cambridge University Press) pp773---836

    [21]

    Matney K, Goorsky M S 1995 J. Cryst. Growth 148 327

    [22]

    Bowen D K, Wormington M 1993 Adv. X-Ray Anal. 35 35

  • [1]

    Kishino K, Ünl? M S, Chyi J I, Reed J, Arsenault L, Morkoc H 1991 IEEE J. Quantum Electron. 27 2025

    [2]

    Ünl? M S, Strite S 1995 J. Appl. Phys. 78 607

    [3]

    Feltin E, Carlin J F, Dorsaz J, Christmann G, Butt? R, La黦t M, Ilegems M, Grandjean N 2006 Appl. Phys. Lett. 88 051108

    [4]

    Mitrofanov O, Schmult S, Manfra M J, Siegrist T, Weimann N G, Sergent A M, Molnar R J 2006 Appl. Phys. Lett. 88 171101

    [5]

    Li T, Carrano J C, Eiting C J, Grudowski P A, Lambert D J H, Kwon H K, Dupuis R D, Campbell J C, Tober R T 2001 Fiber Integ. Opt. 20 125

    [6]

    Kishino K, Yonemaru M, Kikuchi A, Toyoura Y 2001 Phys. Stat. Sol. A 188 321

    [7]

    Mitrofanov O, Schmult S, Manfra M J, Siegrist T, Weimann N G, Sergent A M 2006 Appl. Phys. Lett. 88 171101

    [8]

    Ji X L, Jiang R L, Liu B, Xie Z L, Zhou J J, Li L, Han P, Zhang R, Zheng Y D, Zheng J G 2008 Phys. Stat. Sol. A 205 1572

    [9]

    Ji X L, Jiang R L, Xie Z L, Liu B, Zhou J J, Li L, Han P, Zhang R, Zheng Y D, Gong H M 2007 Chin. Phys. Lett. 24 1735

    [10]

    Liu B, Zhang R, Zheng J G, Ji X L, Fu D Y, Xie Z L, Chen D J, Chen P, Jiang R L, Zheng Y D 2011 Appl. Phys. Lett. 98 261916

    [11]

    Stephens D J, He S S, Lucovsky G, Mikkelsen H, Leo K, Kurz H 1993 J. Vac. Sci. Technol. A 11 4

    [12]

    Feltin E, Christmann G, Dorsaz J, Castiglia A, Carlin J F, Butte R, Grandjean N, Christopoulos S, Baldassarri G, Hogersthal H V, Grundy A J D, Lagoudakis P G, Baumberg J J 2007 Electron. Lett. 43 17

    [13]

    Palik E D 1985 Handbook of Optical Constants of Solids (San Diego: Academic Press) pp719---774

    [14]

    Macleod H A 1986 Thin Film Optical Filters (3rd ed) (London: Institute of Physics Publishing) pp12---186

    [15]

    Tanner B K, Bowen D K 1992 J. Cryst. Growth 126 1

    [16]

    Nevot L, Croce P 1980 Revue Phys. Appl. 15 761

    [17]

    Sinha S K, Sirota E B, Garoff S, Stanley H B 1988 Phys. Rev. B 38 2297

    [18]

    Parrat L G 1954 Phys. Rev. 95 359

    [19]

    Bevington P R, Robinson D K 1969 Data Reduction and Error Analysis for the Physical Science (3rd ed) (New York: McGraw-Hill) pp142---174

    [20]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1986 The Art of Scientific Computing (3rd ed) (New York: Cambridge University Press) pp773---836

    [21]

    Matney K, Goorsky M S 1995 J. Cryst. Growth 148 327

    [22]

    Bowen D K, Wormington M 1993 Adv. X-Ray Anal. 35 35

计量
  • 文章访问数:  3383
  • PDF下载量:  1143
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-09
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜的制备与研究

  • 1. 南京大学电子科学与工程学院, 固体微结构物理国家重点实验室, 江苏省光电信息功能材料重点实验室, 南京 210093;
  • 2. 中国科学院半导体研究所, 半导体照明研发中心, 北京 100083
    基金项目: 

    国家重点基础研究发展计划(批准号: 2011CB301900)、国家自然科学基金(批准号: 60990311, 60906025, 60936004, 10904100, 61176063)、 江苏省高等学校自然科学基金(批准号: BK2010385, BK2010178)、 霍英东教育基金(批准号: 122028)、 中央高等学校基本科研基金(批准号: 1105021008)和 高等学校博士学科点专项科研基金(批准号: 20090091120020)资助的课题.

摘要: 采用光学传递矩阵方法设计了紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜, 并利用等离子体增强化学气相沉积技术在蓝宝石(0001)衬底上制备了SiO2/Si3N4介质膜分布式布拉格反射镜. 光反射测试表明, 样品反射谱的峰值波长仅与理论模拟谱线相差10 nm, 并随着反射镜周期数的增加而蓝移. 由于SiO2与Si3N4具有相对较大的折射率比, 因而制备的周期数为13的样品反射谱的峰值反射率就已大于99%. 样品反射谱的中心波长为333 nm, 谱峰的半高宽为58 nm. 样品截面的扫描电子显微镜和表面的原子力显微镜测量结果表明, 样品反射谱的中心波长蓝移是由子层的层厚和界面粗糙度的变化引起的. X射线反射谱表明,子层界面过渡层对于反射率的影响较小, 并且SiO2膜的质量比Si3N4差, 也是造成反射率低于理论值的原因之一.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回