搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响

田艳 黄丽 罗懋康

噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响

田艳, 黄丽, 罗懋康
PDF
导出引用
导出核心图
  • 针对由加性、乘性噪声和周期信号共同作用的线性过阻尼系统, 在噪声交叉关联强度受到时间周期调制的情况下,利用随机平均法推导了系统响应的信噪比的解析表达式. 研究发现这类系统比噪声间互不相关或噪声交叉关联强度为常数的线性系统具有更丰富的动力学特性, 系统响应的信噪比随交叉关联调制频率的变化出现周期振荡型随机共振, 噪声的交叉关联参数导致随机共振现象的多样化.噪声交叉关联强度的时间周期调制的引入有利于提高对微弱周期信号检测的灵敏度和实现对周期信号的频率估计.
    • 基金项目: 国家自然科学基金(批准号: 11171238)资助的课题.
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. phys. A: Math. Gen. 14 L453

    [2]

    Gitterman M 2005 Physica A 352 309

    [3]

    Fulinski A, Telejko T 1991 Phys. Lett. A 152 11

    [4]

    Jia Y, Li J R 1997 Phys. Rev. Lett. 78 994

    [5]

    Denisov S I, Vitrenko A N, Horsthemke W 2003 Phys. Rev. E 68 046132

    [6]

    Ai B Q, Wang X J, Liu G T, Liu L G 2003 Phys. Rev. E 67 022903

    [7]

    Mei D C, Xie G Z, Cao L, Wu D J 1999 Phys. Rev. E 59 3880

    [8]

    Jin Y F, Xu W 2005 Chaos, Solitons Fractals 23 275

    [9]

    Wang B, Wu X Q, Shao J H 2009 Acta Phys. Sin. 58 1391 (in Chinese) [王兵, 吴秀清, 邵继红 2009 物理学报 58 1391]

    [10]

    Wang B, Yan S P, Wu X Q 2009 Acta Phys. Sin. 58 5191 (in Chinese) [王兵, 严少平, 吴秀清 2009 物理学报 58 5191]

    [11]

    Yang J H, Liu X B 2010 Acta Phys. Sin. 59 3727 (in Chinese) [杨建华, 刘先斌 2010 物理学报 59 3727]

    [12]

    Yang L J, Dai Z C 2012 Acta Phys. Sin. 61 100509 (in Chinese) [杨林静, 戴祖诚 2012 物理学报 61 100509]

    [13]

    Ning L J, Xu W, Yao M L 2008 Chin. Phys. B 17 486

    [14]

    Guo F, Zhou Y R, Jiang S Q, Gu T X 2006 Chin. Phys. 15 947

    [15]

    Du L C, Mei D C 2009 Chin. Phys. B 18 946

    [16]

    Xu W, Jin Y F, Xu M, Li W 2005 Acta Phys. Sin. 54 5027 (in Chinese) [徐伟, 靳艳飞, 徐猛, 李伟 2005 物理学报 54 5027]

    [17]

    Yang M, Li X L, Wu D J 2012 Acta Phys. Sin. 61 160502 (in Chinese) [杨明, 李香莲, 吴大进 2012 物理学报 61 160502]

    [18]

    Zhou Y R 2011 Chin. Phys. B 20 010501

    [19]

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494 (in Chinese) [张莉, 刘立, 曹力 2010 物理学报 59 1494]

    [20]

    Lu Z X, Cao L 2011 Acta Phys. Sin. 60 110501 (in Chinese) [陆志新, 曹力 2011 物理学报 60 110501]

    [21]

    Zhang L, Zhong S C, Peng H, Luo M K 2012 Acta Phys. Sin. 61 130503 (in Chinese) [张路, 钟苏川, 彭皓, 罗懋康 2012 物理学报 61 130503]

    [22]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 物理学报 60 060514]

    [23]

    Chen D Y, Wang Z L 2008 Acta Phys. Sin. 57 3333 (in Chinese) [陈德彝, 王忠龙 2008 物理学报 57 3333]

    [24]

    Chen D Y, Wang Z L 2009 Acta Phys. Sin. 58 2907 (in Chinese) [陈德彝, 王忠龙 2009 物理学报 58 2907]

    [25]

    Chen D Y, Wang Z L 2009 Acta Phys. Sin. 58 1403 (in Chinese) [陈德彝, 王忠龙 2009 物理学报 58 1403]

    [26]

    Chen D Y, Zhang L 2009 Chin. Phys. B 18 1755

    [27]

    Tessone C J, Wio H S 1998 Mod. Phys. Lett. B 12 1195

    [28]

    Tessone C J, Wio H S, Hänggi P 2000 Phys. Rev. E 62 4623

    [29]

    Shapiro V E, Loginov V M 1978 Physica A 91 563

    [30]

    Fulinski A 1995 Acta Phys. Pol. B 26 1131

    [31]

    Gardiner C W 1983 Handbook of Stochastic Processes (Berlin: Springer) p86

    [32]

    Kubo R, Toda M, Hashitsume N 1986 Nonequilibrium stastical mechanics Part 2 ( Berlin: Springer)

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. phys. A: Math. Gen. 14 L453

    [2]

    Gitterman M 2005 Physica A 352 309

    [3]

    Fulinski A, Telejko T 1991 Phys. Lett. A 152 11

    [4]

    Jia Y, Li J R 1997 Phys. Rev. Lett. 78 994

    [5]

    Denisov S I, Vitrenko A N, Horsthemke W 2003 Phys. Rev. E 68 046132

    [6]

    Ai B Q, Wang X J, Liu G T, Liu L G 2003 Phys. Rev. E 67 022903

    [7]

    Mei D C, Xie G Z, Cao L, Wu D J 1999 Phys. Rev. E 59 3880

    [8]

    Jin Y F, Xu W 2005 Chaos, Solitons Fractals 23 275

    [9]

    Wang B, Wu X Q, Shao J H 2009 Acta Phys. Sin. 58 1391 (in Chinese) [王兵, 吴秀清, 邵继红 2009 物理学报 58 1391]

    [10]

    Wang B, Yan S P, Wu X Q 2009 Acta Phys. Sin. 58 5191 (in Chinese) [王兵, 严少平, 吴秀清 2009 物理学报 58 5191]

    [11]

    Yang J H, Liu X B 2010 Acta Phys. Sin. 59 3727 (in Chinese) [杨建华, 刘先斌 2010 物理学报 59 3727]

    [12]

    Yang L J, Dai Z C 2012 Acta Phys. Sin. 61 100509 (in Chinese) [杨林静, 戴祖诚 2012 物理学报 61 100509]

    [13]

    Ning L J, Xu W, Yao M L 2008 Chin. Phys. B 17 486

    [14]

    Guo F, Zhou Y R, Jiang S Q, Gu T X 2006 Chin. Phys. 15 947

    [15]

    Du L C, Mei D C 2009 Chin. Phys. B 18 946

    [16]

    Xu W, Jin Y F, Xu M, Li W 2005 Acta Phys. Sin. 54 5027 (in Chinese) [徐伟, 靳艳飞, 徐猛, 李伟 2005 物理学报 54 5027]

    [17]

    Yang M, Li X L, Wu D J 2012 Acta Phys. Sin. 61 160502 (in Chinese) [杨明, 李香莲, 吴大进 2012 物理学报 61 160502]

    [18]

    Zhou Y R 2011 Chin. Phys. B 20 010501

    [19]

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494 (in Chinese) [张莉, 刘立, 曹力 2010 物理学报 59 1494]

    [20]

    Lu Z X, Cao L 2011 Acta Phys. Sin. 60 110501 (in Chinese) [陆志新, 曹力 2011 物理学报 60 110501]

    [21]

    Zhang L, Zhong S C, Peng H, Luo M K 2012 Acta Phys. Sin. 61 130503 (in Chinese) [张路, 钟苏川, 彭皓, 罗懋康 2012 物理学报 61 130503]

    [22]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 物理学报 60 060514]

    [23]

    Chen D Y, Wang Z L 2008 Acta Phys. Sin. 57 3333 (in Chinese) [陈德彝, 王忠龙 2008 物理学报 57 3333]

    [24]

    Chen D Y, Wang Z L 2009 Acta Phys. Sin. 58 2907 (in Chinese) [陈德彝, 王忠龙 2009 物理学报 58 2907]

    [25]

    Chen D Y, Wang Z L 2009 Acta Phys. Sin. 58 1403 (in Chinese) [陈德彝, 王忠龙 2009 物理学报 58 1403]

    [26]

    Chen D Y, Zhang L 2009 Chin. Phys. B 18 1755

    [27]

    Tessone C J, Wio H S 1998 Mod. Phys. Lett. B 12 1195

    [28]

    Tessone C J, Wio H S, Hänggi P 2000 Phys. Rev. E 62 4623

    [29]

    Shapiro V E, Loginov V M 1978 Physica A 91 563

    [30]

    Fulinski A 1995 Acta Phys. Pol. B 26 1131

    [31]

    Gardiner C W 1983 Handbook of Stochastic Processes (Berlin: Springer) p86

    [32]

    Kubo R, Toda M, Hashitsume N 1986 Nonequilibrium stastical mechanics Part 2 ( Berlin: Springer)

  • [1] 周丙常, 徐 伟. 关联噪声驱动的非对称双稳系统的随机共振. 物理学报, 2008, 57(4): 2035-2040. doi: 10.7498/aps.57.2035
    [2] 汪志云, 陈培杰, 张良英. 色关联噪声驱动下双模激光随机共振. 物理学报, 2014, 63(19): 194204. doi: 10.7498/aps.63.194204
    [3] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振. 物理学报, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [4] 陈德彝, 王忠龙. 噪声间关联程度的时间周期调制对单模激光随机共振的影响. 物理学报, 2008, 57(6): 3333-3336. doi: 10.7498/aps.57.3333
    [5] 徐 伟, 李 伟, 靳艳飞, 徐 猛. 偏置信号调制下色关联噪声驱动的线性系统的随机共振. 物理学报, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [6] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [7] 宁丽娟, 徐伟. 信号调制下分段噪声驱动的线性系统的随机共振. 物理学报, 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [8] 李 蓉, 温孝东, 祝恒江. 利用随机共振在强噪声下提取信息信号. 物理学报, 2003, 52(10): 2404-2408. doi: 10.7498/aps.52.2404
    [9] 康艳梅, 徐健学, 谢 勇. 弱噪声极限下二维布朗运动的随机共振现象. 物理学报, 2003, 52(4): 802-808. doi: 10.7498/aps.52.802
    [10] 曹 力, 张良英, 吴大进. 具有色关联的色噪声驱动下单模激光线性模型的随机共振. 物理学报, 2003, 52(5): 1174-1178. doi: 10.7498/aps.52.1174
    [11] 程庆华, 曹 力, 吴大进. 信号调制色泵噪声和实虚部间关联量子噪声驱动下单模激光的随机共振现象. 物理学报, 2004, 53(8): 2556-2562. doi: 10.7498/aps.53.2556
    [12] 宁丽娟, 徐 伟. 光学双稳系统中的随机共振. 物理学报, 2007, 56(4): 1944-1947. doi: 10.7498/aps.56.1944
    [13] 杨明, 李香莲, 吴大进. 单模激光系统随机共振的模拟研究. 物理学报, 2012, 61(16): 160502. doi: 10.7498/aps.61.160502
    [14] 曹 力, 金国祥, 张良英. 偏置调幅波调制噪声的单模激光随机共振. 物理学报, 2007, 56(7): 3739-3743. doi: 10.7498/aps.56.3739
    [15] 曹 力, 金国祥, 张良英. 色噪声驱动下调幅波的单模激光随机共振. 物理学报, 2007, 56(9): 5093-5097. doi: 10.7498/aps.56.5093
    [16] 张莉, 元秀华, 武力. 脉冲信号被噪声调制的单模激光随机共振. 物理学报, 2012, 61(11): 110501. doi: 10.7498/aps.61.110501
    [17] 焦尚彬, 杨蓉, 张青, 谢国. α稳定噪声驱动的非对称双稳随机共振现象. 物理学报, 2015, 64(2): 020502. doi: 10.7498/aps.64.020502
    [18] 曹 力, 王 俊, 韩立波, 吴大进. 信号直接调制下色关联噪声驱动的单模激光的随机共振. 物理学报, 2004, 53(7): 2127-2132. doi: 10.7498/aps.53.2127
    [19] 马正木, 靳艳飞. 二值噪声激励下欠阻尼周期势系统的随机共振. 物理学报, 2015, 64(24): 240502. doi: 10.7498/aps.64.240502
    [20] 董小娟. 含关联噪声与时滞项的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5618-5622. doi: 10.7498/aps.56.5618
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1694
  • PDF下载量:  702
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-15
  • 修回日期:  2012-10-23
  • 刊出日期:  2013-03-05

噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响

  • 1. 四川大学数学学院, 成都 610065
    基金项目: 

    国家自然科学基金(批准号: 11171238)资助的课题.

摘要: 针对由加性、乘性噪声和周期信号共同作用的线性过阻尼系统, 在噪声交叉关联强度受到时间周期调制的情况下,利用随机平均法推导了系统响应的信噪比的解析表达式. 研究发现这类系统比噪声间互不相关或噪声交叉关联强度为常数的线性系统具有更丰富的动力学特性, 系统响应的信噪比随交叉关联调制频率的变化出现周期振荡型随机共振, 噪声的交叉关联参数导致随机共振现象的多样化.噪声交叉关联强度的时间周期调制的引入有利于提高对微弱周期信号检测的灵敏度和实现对周期信号的频率估计.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回