搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数维方法研究GaAs薄膜中的极化子

武振华 李华 严亮星 刘炳灿 田强

引用本文:
Citation:

分数维方法研究GaAs薄膜中的极化子

武振华, 李华, 严亮星, 刘炳灿, 田强

Polaron effect in a GaAs film: the fraction-dimensional space approach

Wu Zhen-Hua, Li Hua, Yan Liang-Xing, Liu Bing-Can, Tian Qiang
PDF
导出引用
  • 本文采用分数维方法, 在讨论Al0.3Ga0.7As衬底上GaAs薄膜的分数维基础上, 计算了GaAs薄膜中的极化子结合能和有效质量. 随着薄膜厚度的增加, 极化子结合能和质量变化单调地减小. 当薄膜厚度Lw70 并且衬底厚度Lb200 时, 衬底厚度的变化对薄膜中极化子的结合能和质量变化的影响比较显著, 随着衬底厚度的增加, 薄膜中极化子的结合能和质量变化逐渐变大; 当薄膜厚度Lw70 或者衬底厚度Lb200 时, 衬底厚度的变化对薄膜中极化子的结合能和质量变化的影响不显著. 研究结果为GaAs薄膜电子和光电子器件的研究和应用提供参考.
    Within the framework of the fraction-dimensional space approach, the binding energy and the effective mass of a polaron confined in a GaAs film deposited on Al0.3Ga0.7As substrate have been investigated. It is shown that the polaron binding energy and mass shift decrease monotonously with increasing film thickness. For the film thickness of Lw70 and the substrate thickness of Lb200 , the substrate thickness will influence the polaron binding energy and mass shift. The polaron binding energy and mass shift increase with increasing substrate thickness. In the region Lw70 or Lb200 , the substrate thickness has no influence on the polaron binding energy and mass shift.
    • 基金项目: 国家自然科学基金(批准号:10574011,10974017)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10574011, 10974017).
    [1]

    Wang Z P, Liang X X 2005 Chin. Phys. Lett. 22 2367

    [2]

    Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese) [赵凤岐, 周炳卿 2007 物理学报 56 4856]

    [3]

    Yu Y F, Xiao J L, Yin J W, Wang Z W 2008 Chin. Phys. B 17 2236

    [4]

    He X F 1987 Solid State Commun. 61 53 He X F 1990 Solid State Commun. 75 111

    [5]

    He X F 1990 Phys. Rev. B 42 11751 He X F 1991 Phys. Rev. B 43 2063

    [6]

    Mathieu H, Lefebvre P, Christol P 1992 Phys. Rev. B 46 4092

    [7]

    Lefebvre P, Christol P, Mathieu H 1992 Phys. Rev. B 46 13603

    [8]

    Christol P, Lefebvre P, Mathieu H 1993 J. Appl. Phys. 74 5626

    [9]

    de Dios-Leyva M, Bruno-Alfonso A, Matos-Abiague A, Oliveira L E 1997 J. Phys.: Condens. Matter 9 8477

    [10]

    Matos-Abiague A, Oliveira L E, de Dios-Leyva M 1998 Phys. Rev. B 58 4072

    [11]

    Wang Z P, Liang X X 2009 Phys. Lett. A 373 2596

    [12]

    Zhao Q X, Monemar B, Holtz P O, Willander M, Fimland B O, Johannessen K 1994 Phys. Rev. B 50 4476

    [13]

    Reyes-Gómez E, Matos-Abiague A, Perdomo-Leiva C A, de Dios-Leyva M, Oliveira L E 2000 Phys. Rev. B 61 13104

    [14]

    Singh J, Birkedal D, Lyssenko V G, Hvam J M 1996 Phys. Rev. B 53 15909

    [15]

    Thilagam A 1997 Phys. Rev. B 55 7804

    [16]

    Wang Z P, Liang X X 2010 Solid State Commun. 150 356

    [17]

    Matos-Abiague A, Oliveira L E, de Dios-Leyva M 2001 Physica B 296 342

    [18]

    Reyes-Gómez E, Perdomo-Leiva C A, Oliveira L E, de Dios-Leyva M 2000 Physica E 8 239

    [19]

    Oliveira L E, Duque C A, Porras-Montenegro N, de Dios-Leyva M 2001 Physica B 302-303 72

    [20]

    Reyes-Gómez E, Oliveira L E, de Dios-Leyva M 1999 J. Appl. Phys. 85 4045

    [21]

    Mikhailov I D, Betancur F J, Escorcia R A, Sierra-Ortega J 2003 Phys. Rev. B 67 115317

    [22]

    Kundrotas J, Črškus A, Ašmontas S, Valušis G 2005 Phys. Rev. B 72 235322

    [23]

    Kundrotas J, Črškus A, Ašmontas S, Valušis G, Halsall M P, Johannessen E, Harrison P 2007 Semicond. Sci. Technol. 22 1070

    [24]

    Matos-Abiague A 2002 J. Phys.: Condens. Matter 14 4543

    [25]

    Matos-Abiague A 2002 Semicond. Sci. Technol. 17 150

    [26]

    Matos-Abiague A 2002 Phys. Rev. B 65 165321

    [27]

    Rodrí}guez Suárez R L, Matos-Abiague A 2003 Physica E 18 485

    [28]

    Thilagam A Matos-Abiague A 2004 J. Phys.: Condens. Matter 16 3981

    [29]

    Wang Z P, Liang X X, Wang X 2007 Eur. Phys. J. B 59 41

    [30]

    Deng Y P, Lv B B, Tian Q 2010 Acta Phys. Sin. 59 4961 (in Chinese) [邓艳平, 吕彬彬, 田强 2010 物理学报 59 4961]

    [31]

    Deng Y P Tian Q 2011 Sci. China: Phys. Mech. Astron. 54 1593

  • [1]

    Wang Z P, Liang X X 2005 Chin. Phys. Lett. 22 2367

    [2]

    Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese) [赵凤岐, 周炳卿 2007 物理学报 56 4856]

    [3]

    Yu Y F, Xiao J L, Yin J W, Wang Z W 2008 Chin. Phys. B 17 2236

    [4]

    He X F 1987 Solid State Commun. 61 53 He X F 1990 Solid State Commun. 75 111

    [5]

    He X F 1990 Phys. Rev. B 42 11751 He X F 1991 Phys. Rev. B 43 2063

    [6]

    Mathieu H, Lefebvre P, Christol P 1992 Phys. Rev. B 46 4092

    [7]

    Lefebvre P, Christol P, Mathieu H 1992 Phys. Rev. B 46 13603

    [8]

    Christol P, Lefebvre P, Mathieu H 1993 J. Appl. Phys. 74 5626

    [9]

    de Dios-Leyva M, Bruno-Alfonso A, Matos-Abiague A, Oliveira L E 1997 J. Phys.: Condens. Matter 9 8477

    [10]

    Matos-Abiague A, Oliveira L E, de Dios-Leyva M 1998 Phys. Rev. B 58 4072

    [11]

    Wang Z P, Liang X X 2009 Phys. Lett. A 373 2596

    [12]

    Zhao Q X, Monemar B, Holtz P O, Willander M, Fimland B O, Johannessen K 1994 Phys. Rev. B 50 4476

    [13]

    Reyes-Gómez E, Matos-Abiague A, Perdomo-Leiva C A, de Dios-Leyva M, Oliveira L E 2000 Phys. Rev. B 61 13104

    [14]

    Singh J, Birkedal D, Lyssenko V G, Hvam J M 1996 Phys. Rev. B 53 15909

    [15]

    Thilagam A 1997 Phys. Rev. B 55 7804

    [16]

    Wang Z P, Liang X X 2010 Solid State Commun. 150 356

    [17]

    Matos-Abiague A, Oliveira L E, de Dios-Leyva M 2001 Physica B 296 342

    [18]

    Reyes-Gómez E, Perdomo-Leiva C A, Oliveira L E, de Dios-Leyva M 2000 Physica E 8 239

    [19]

    Oliveira L E, Duque C A, Porras-Montenegro N, de Dios-Leyva M 2001 Physica B 302-303 72

    [20]

    Reyes-Gómez E, Oliveira L E, de Dios-Leyva M 1999 J. Appl. Phys. 85 4045

    [21]

    Mikhailov I D, Betancur F J, Escorcia R A, Sierra-Ortega J 2003 Phys. Rev. B 67 115317

    [22]

    Kundrotas J, Črškus A, Ašmontas S, Valušis G 2005 Phys. Rev. B 72 235322

    [23]

    Kundrotas J, Črškus A, Ašmontas S, Valušis G, Halsall M P, Johannessen E, Harrison P 2007 Semicond. Sci. Technol. 22 1070

    [24]

    Matos-Abiague A 2002 J. Phys.: Condens. Matter 14 4543

    [25]

    Matos-Abiague A 2002 Semicond. Sci. Technol. 17 150

    [26]

    Matos-Abiague A 2002 Phys. Rev. B 65 165321

    [27]

    Rodrí}guez Suárez R L, Matos-Abiague A 2003 Physica E 18 485

    [28]

    Thilagam A Matos-Abiague A 2004 J. Phys.: Condens. Matter 16 3981

    [29]

    Wang Z P, Liang X X, Wang X 2007 Eur. Phys. J. B 59 41

    [30]

    Deng Y P, Lv B B, Tian Q 2010 Acta Phys. Sin. 59 4961 (in Chinese) [邓艳平, 吕彬彬, 田强 2010 物理学报 59 4961]

    [31]

    Deng Y P Tian Q 2011 Sci. China: Phys. Mech. Astron. 54 1593

  • [1] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响. 物理学报, 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [2] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [3] 邸冰, 王亚东, 张亚琳. 链间耦合对极化子非弹性散射性质的影响. 物理学报, 2013, 62(10): 107202. doi: 10.7498/aps.62.107202
    [4] 刘炳灿, 李华, 严亮星, 孙慧, 田强. GaAs薄膜的有效量子限制长度及其极化子特性. 物理学报, 2013, 62(19): 197302. doi: 10.7498/aps.62.197302
    [5] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究. 物理学报, 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [6] 赵翠兰, 丛银川. 球壳量子点中极化子和量子比特的声子效应. 物理学报, 2012, 61(18): 186301. doi: 10.7498/aps.61.186301
    [7] 任学藻, 贺树, 丛红璐, 王旭文. 两格点两电子Hubbard-Holstein模型极化子的量子纠缠特性. 物理学报, 2012, 61(12): 124207. doi: 10.7498/aps.61.124207
    [8] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [9] 宋瑞, 刘晓静, 王亚东, 邸冰, 安忠. 电子-晶格耦合非线性项对极化子性质的影响. 物理学报, 2010, 59(5): 3461-3465. doi: 10.7498/aps.59.3461
    [10] 赵翠兰, 高宽云. 声子和磁场对量子环中极化子性质的影响. 物理学报, 2010, 59(7): 4857-4862. doi: 10.7498/aps.59.4857
    [11] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [12] 任学藻, 黄书文, 廖旭, 汪克林. 有限格点一维Holstein极化子研究. 物理学报, 2009, 58(4): 2680-2683. doi: 10.7498/aps.58.2680
    [13] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [14] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [15] 张 耘. 极化子荧光及其断层扫描对Ti:LiNbO3光波导表征研究. 物理学报, 2007, 56(1): 280-284. doi: 10.7498/aps.56.280
    [16] 任学藻, 廖 旭, 刘 涛, 汪克林. 电子与双声子相互作用对Holstein极化子的影响. 物理学报, 2006, 55(6): 2865-2870. doi: 10.7498/aps.55.2865
    [17] 熊昌民, 孙继荣, 王登京, 沈保根. 厚度与应变效应对La0.67Ca0.33MnO3薄膜电输运与居里温度的影响. 物理学报, 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
    [18] 沈 韩, 许 华, 陈 敏, 李景德. 钇掺杂钨酸铅晶体中的极化子和导纳谱. 物理学报, 2003, 52(12): 3125-3129. doi: 10.7498/aps.52.3125
    [19] 王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰. 基态非简并聚合物中的极化子和双极化子动力学. 物理学报, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [20] 魏建华, 解士杰, 梅良模. 混合卤化物中的极化子与双极化子. 物理学报, 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
计量
  • 文章访问数:  5151
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-14
  • 修回日期:  2013-01-06
  • 刊出日期:  2013-05-05

/

返回文章
返回