搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抛物量子点中强耦合磁双极化子内部激发态性质

额尔敦朝鲁 白旭芳 韩超

抛物量子点中强耦合磁双极化子内部激发态性质

额尔敦朝鲁, 白旭芳, 韩超
PDF
导出引用
导出核心图
  • 基于Lee-Low-Pines幺正变换,采用Pekar类型变分法研究了抛物量子点中强耦合磁双极化子的内部激发态性质,当考虑自旋和外磁场影响时,推导出二维量子点中强耦合磁双极化子基态的能量E0,声子平均数N0以及第一激发态的能量E1,声子平均数N1随量子点受限强度ω0,介电常数比η,电子-声子耦合强度α和磁场的回旋共振频率ωC的变化规律. 结果表明,磁双极化子的基态能量E0和第一激发态能量E1由两电子的单粒子能量EE,两电子间库仑相互作用能EC,电子自旋与磁场相互作用能Es和电子-声子相互作用能Ee-ph四部分组成;单粒子“轨道”运动与磁场相互作用导致了第一激发态能级E1分裂为E1(1+1),E1(1-1)两条,而电子自旋-磁场相互作用的效应又使基态和第一激发态的各能级均产生了三条“精细结构”;N0和N1随ω0,α和ωc的增加而增大,Ee-ph的取值总是小于零,其绝对值随α,ω0 和ωc的增加而增大;电子-声子相互作用的效应是束缚态磁双极化子形成的有力因素,而限定势和电子之间的库仑排斥能的存在不利于束缚态磁双极化子的形成;能量为E1(1-1)的磁双极化子要比能量为E1(1+1)的磁双极化子更容易且更稳定地处于束缚态.
    • 基金项目: 河北省自然科学基金(批准号:E2013407119)和河北省高等学校科学技术研究重点项目(批准号:ZD20131008)资助的课题.
    [1]

    Li W S, Sun B Q 2013 Acta Phys. Sin. 62 047801 (in Chinese) [李文生, 孙宝权 2013 物理学报 62 047801]

    [2]

    Yang F, Zheng R S 2007 Solid State Commun. 141 555

    [3]

    Zhu J, Ban S L, Ha S H 2012 Chin. Phys. B 21 097301

    [4]

    Li Y, Zheng R S, Feng Y C, Liu S H, Niu H B 2006 Chin. Phys. B 15 702

    [5]

    Shen M, Bai Y K, An X T, Liu J J 2013 Chin. Phys. B 22 047101

    [6]

    Chen S H Yao Q Z 2011 Modern Phys. Lett. B 25 2419

    [7]

    Kastner M A 1992 Rev. Mod. Phys. 64 849

    [8]

    Loss D, Di Vincenzo D P 1998 Phys. Rev. A 57 120

    [9]

    Burkard G, Loss D, Di Vincenzo D P 1999 Phys. Rev. B 59 2070

    [10]

    Harju A, Siljamäki S, Nieminen R M 2002 Phys. Rev. Lett. 88 226804

    [11]

    Chen Z S, Sun L L, Li S S 2004 J. Semicond. 25 790 (in Chinese) [陈早生, 孙连亮, 李树深 2004 半导体学报 25 790]

    [12]

    Eerdunchaolu, Wuyunqimuge, Xiao X, Han C, Win W 2012 Commun. Theor. Phys. 57 157

    [13]

    Emin D 1989 Phys. Rev. Lett. 62 1544

    [14]

    Peng Q M, Sun J X, Li X J, Li M L, Li F 2011 Appl. Phys. Lett. 99 033509

    [15]

    Schellekens A J, Wagemans W, Kersten S P, Bobbert P A, Koopmans B 2011 Phys. Rev. B 84 075204

    [16]

    Pokatilov E P, Crotitoru M D, Fomin V M, Devreese J T 2003 Phys. Stat. Sol. B 237 244

    [17]

    Senger R T, Ercelebi A R T 2002 J. Phys.: Condens Matt. 14 5549

    [18]

    Ruan Y H, Chen Q H, Jiao Z K 2003 Int. J. Modern Phys. B 17 4332

    [19]

    Hohenadler M, Littlewood P B 2007 Phys. Rev. B 76 155122

    [20]

    Fai L C, Fomethe A, Fotue A J, Mborong V B, Domngang S, Issofa N, Tchoffo M 2008 Superlatt. Microstuct. 43 44

    [21]

    Eerdunchaolu, Win W 2011 Physica B 406 358

    [22]

    Xin W, Gao Z M, Wuyunqimuge, Han C, Eerdunchaolu 2012 Superlattice Microst. 52 872

    [23]

    Lee T D, Low F M, Pines D 1953 Phys. Rev. 90 97

    [24]

    Yildirim T, Ercelebi A 1999 J. Phys. Condens. Matter. 3 1271

    [25]

    Schiff L 1986 Quantum Mechanics (3nd Ed) (New York: McGraw-Hill, Inc.) p375, p376

  • [1]

    Li W S, Sun B Q 2013 Acta Phys. Sin. 62 047801 (in Chinese) [李文生, 孙宝权 2013 物理学报 62 047801]

    [2]

    Yang F, Zheng R S 2007 Solid State Commun. 141 555

    [3]

    Zhu J, Ban S L, Ha S H 2012 Chin. Phys. B 21 097301

    [4]

    Li Y, Zheng R S, Feng Y C, Liu S H, Niu H B 2006 Chin. Phys. B 15 702

    [5]

    Shen M, Bai Y K, An X T, Liu J J 2013 Chin. Phys. B 22 047101

    [6]

    Chen S H Yao Q Z 2011 Modern Phys. Lett. B 25 2419

    [7]

    Kastner M A 1992 Rev. Mod. Phys. 64 849

    [8]

    Loss D, Di Vincenzo D P 1998 Phys. Rev. A 57 120

    [9]

    Burkard G, Loss D, Di Vincenzo D P 1999 Phys. Rev. B 59 2070

    [10]

    Harju A, Siljamäki S, Nieminen R M 2002 Phys. Rev. Lett. 88 226804

    [11]

    Chen Z S, Sun L L, Li S S 2004 J. Semicond. 25 790 (in Chinese) [陈早生, 孙连亮, 李树深 2004 半导体学报 25 790]

    [12]

    Eerdunchaolu, Wuyunqimuge, Xiao X, Han C, Win W 2012 Commun. Theor. Phys. 57 157

    [13]

    Emin D 1989 Phys. Rev. Lett. 62 1544

    [14]

    Peng Q M, Sun J X, Li X J, Li M L, Li F 2011 Appl. Phys. Lett. 99 033509

    [15]

    Schellekens A J, Wagemans W, Kersten S P, Bobbert P A, Koopmans B 2011 Phys. Rev. B 84 075204

    [16]

    Pokatilov E P, Crotitoru M D, Fomin V M, Devreese J T 2003 Phys. Stat. Sol. B 237 244

    [17]

    Senger R T, Ercelebi A R T 2002 J. Phys.: Condens Matt. 14 5549

    [18]

    Ruan Y H, Chen Q H, Jiao Z K 2003 Int. J. Modern Phys. B 17 4332

    [19]

    Hohenadler M, Littlewood P B 2007 Phys. Rev. B 76 155122

    [20]

    Fai L C, Fomethe A, Fotue A J, Mborong V B, Domngang S, Issofa N, Tchoffo M 2008 Superlatt. Microstuct. 43 44

    [21]

    Eerdunchaolu, Win W 2011 Physica B 406 358

    [22]

    Xin W, Gao Z M, Wuyunqimuge, Han C, Eerdunchaolu 2012 Superlattice Microst. 52 872

    [23]

    Lee T D, Low F M, Pines D 1953 Phys. Rev. 90 97

    [24]

    Yildirim T, Ercelebi A 1999 J. Phys. Condens. Matter. 3 1271

    [25]

    Schiff L 1986 Quantum Mechanics (3nd Ed) (New York: McGraw-Hill, Inc.) p375, p376

  • [1] 古丽姗, 王东升, 彭勇刚, 郑雨军. 单量子点在双脉冲激发下偏振光子发射的统计特性. 物理学报, 2011, 60(8): 084207. doi: 10.7498/aps.60.084207
    [2] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [3] 程成, 王国栋, 程潇羽. 室温下表面极化效应对量子点带隙和吸收峰波长的影响. 物理学报, 2017, 66(13): 137802. doi: 10.7498/aps.66.137802
    [4] 栗军, 刘玉, 平婧, 叶银, 李新奇. 双量子点Aharonov-Bohm干涉系统输运性质的大偏离分析. 物理学报, 2012, 61(13): 137202. doi: 10.7498/aps.61.137202
    [5] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [6] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [7] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运. 物理学报, 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [8] 汤乃云, 陈效双, 陆 卫. 尺寸分布对量子点激发态发光性质的影响. 物理学报, 2005, 54(12): 5855-5860. doi: 10.7498/aps.54.5855
    [9] 周洋, 郭健宏. 双量子点结构中Majorana费米子的噪声特性. 物理学报, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [10] 郑军, 李春雷, 杨曦, 郭永. 四端双量子点系统中的自旋和电荷能斯特效应. 物理学报, 2017, 66(9): 097302. doi: 10.7498/aps.66.097302
    [11] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [12] 张西忠, 张兆玉, 彭勇刚, 郑雨军. 单量子点在连续外场激发下发射光子性质的理论研究. 物理学报, 2010, 59(3): 1791-1796. doi: 10.7498/aps.59.1791
    [13] 董庆瑞, 牛智川. 垂直耦合自组织InAs双量子点中激子能的计算. 物理学报, 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [14] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [15] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩. 物理学报, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [16] 颜晓红, 邓宇翔, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [17] 赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来. 偶极子位置及偏振对激发光子晶体H1微腔的影响. 物理学报, 2016, 65(13): 134206. doi: 10.7498/aps.65.134206
    [18] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [19] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [20] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性. 物理学报, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
  • 引用本文:
    Citation:
计量
  • 文章访问数:  844
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-06
  • 修回日期:  2013-10-24
  • 刊出日期:  2014-01-05

抛物量子点中强耦合磁双极化子内部激发态性质

  • 1. 河北科技师范学院物理系, 秦皇岛 066004;
  • 2. 内蒙古民族大学物理与电子信息学院, 通辽 028043
    基金项目: 

    河北省自然科学基金(批准号:E2013407119)和河北省高等学校科学技术研究重点项目(批准号:ZD20131008)资助的课题.

摘要: 基于Lee-Low-Pines幺正变换,采用Pekar类型变分法研究了抛物量子点中强耦合磁双极化子的内部激发态性质,当考虑自旋和外磁场影响时,推导出二维量子点中强耦合磁双极化子基态的能量E0,声子平均数N0以及第一激发态的能量E1,声子平均数N1随量子点受限强度ω0,介电常数比η,电子-声子耦合强度α和磁场的回旋共振频率ωC的变化规律. 结果表明,磁双极化子的基态能量E0和第一激发态能量E1由两电子的单粒子能量EE,两电子间库仑相互作用能EC,电子自旋与磁场相互作用能Es和电子-声子相互作用能Ee-ph四部分组成;单粒子“轨道”运动与磁场相互作用导致了第一激发态能级E1分裂为E1(1+1),E1(1-1)两条,而电子自旋-磁场相互作用的效应又使基态和第一激发态的各能级均产生了三条“精细结构”;N0和N1随ω0,α和ωc的增加而增大,Ee-ph的取值总是小于零,其绝对值随α,ω0 和ωc的增加而增大;电子-声子相互作用的效应是束缚态磁双极化子形成的有力因素,而限定势和电子之间的库仑排斥能的存在不利于束缚态磁双极化子的形成;能量为E1(1-1)的磁双极化子要比能量为E1(1+1)的磁双极化子更容易且更稳定地处于束缚态.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回