搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位补偿算法对提高太赫兹雷达距离像分辨率的研究

梁美彦 张存林

引用本文:
Citation:

相位补偿算法对提高太赫兹雷达距离像分辨率的研究

梁美彦, 张存林

Improvement in the range resolution of THz radar using phase compensation algorithm

Liang Mei-Yan, Zhang Cun-Lin
PDF
导出引用
  • 介绍了0.2 THz频率步进雷达系统以及获得一维距离像的方法,并利用0.2 THz雷达对角反射器进行距离像分辨率实验,分析了频率步进信号相位不一致对一维距离像以及分辨率的影响,提出了回波相位补偿的方法. 经过相位补偿后,目标距离像分辨率和信噪比都显著提高,分辨率达到了厘米量级. 仿真和实验结果表明,宽带太赫兹频率步进雷达经过相位补偿,可以对目标进行高分辨率成像,从而为太赫兹雷达二维和三维成像奠定了基础.
    The paper describes the principle of 0.2 THz stepped-frequency radar system which is utilized to achieve a one-dimensional range profile and range resolution. Terahertz (THz) stepped frequency radar is more susceptible to the phase error which will cause the spread and shift of range profile, thus affecting the quality of the high resolution range profile and signal-to-noise ratio. Therefore, a method of phase compensation is proposed to improve the range resolution. After phase compensation, the resolution and signal-to-noise ratio are improved remarkably. The range resolution can reach centimeter scale. Experimental and simulation results indicate that THz stepped frequency radar can reach high resolution range profile with the phase compensation method, which provides a foundation for further research on two-dimensional and three-dimensional image in the THz band.
    • 基金项目: 国家重点基础研究发展计划(批准号:2007CB310408)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2007CB310408).
    [1]

    Cooper K B, Dengler R J, Llombart N, et al. 2011 IEEE Trans. on Terahertz Sci. Technol. 1 169

    [2]

    Cooper K B, Dengler R J, Llombart N, et al. 2010 Proceedinds of SPIE Orlando, 2010 7671 p76710Y-1

    [3]

    Dengler R J, Cooper K B, Chattopadhyay G, et al. 2007 IEEE MTT-S International Microwave Symposium Honolulu, 2007 p1371

    [4]

    Chattopadhyay G, Cooper K B, Dengler R, et al. 2008 19th International Symposium on Space Terahertz Technology Groningen, April 28-30, 2008 p300

    [5]

    Cooper K B, Dengler R J, Chattopadhyay G, et al. 2008 IEEE Micro. and Wire. Comp. Lett. 18 64

    [6]

    Essen H, Wahlen A, Sommeretal R, et al. 2007 Electron. Lett. 43 1114

    [7]

    Mencia-Oliva B, Grajal J, Badolato A 2011 IEEE Radar Conference, May 2011 p389

    [8]

    Broad Agency Announcement, Video Synthetic Aperture Radar, Strategic Techology Office DARPA-BAA-12-41 United States 2012

    [9]

    Ding J S, Kahl M, Loffeld O, et al. 2013 IEEE Trans. on Terahertz Sci. Techol. 3 606

    [10]

    China Academy of Engineering Physics THz Communication and Radar Technology Obtained Significant Breakthrough 2012 (in Chinese) [中国工程物理研究院太赫兹通信和雷达技术取得重要突破 2012 信息与电子工程]

    [11]

    Gao X, Li C, Gu S M, Fang G Y 2012 IEEE Antennas and Wireless Propaga. Lett. 11 787

    [12]

    Gao X, Li C, Fang G Y 2013 Chin. Phys. Lett. 30 068401

    [13]

    Gao X, Li C, Fang G Y 2014 Chin. Phys. B 23 028401

    [14]

    Zhang B, Pi Y M, Yang X B 2013 IEEE International Conference on Communications, June 2013 p921

  • [1]

    Cooper K B, Dengler R J, Llombart N, et al. 2011 IEEE Trans. on Terahertz Sci. Technol. 1 169

    [2]

    Cooper K B, Dengler R J, Llombart N, et al. 2010 Proceedinds of SPIE Orlando, 2010 7671 p76710Y-1

    [3]

    Dengler R J, Cooper K B, Chattopadhyay G, et al. 2007 IEEE MTT-S International Microwave Symposium Honolulu, 2007 p1371

    [4]

    Chattopadhyay G, Cooper K B, Dengler R, et al. 2008 19th International Symposium on Space Terahertz Technology Groningen, April 28-30, 2008 p300

    [5]

    Cooper K B, Dengler R J, Chattopadhyay G, et al. 2008 IEEE Micro. and Wire. Comp. Lett. 18 64

    [6]

    Essen H, Wahlen A, Sommeretal R, et al. 2007 Electron. Lett. 43 1114

    [7]

    Mencia-Oliva B, Grajal J, Badolato A 2011 IEEE Radar Conference, May 2011 p389

    [8]

    Broad Agency Announcement, Video Synthetic Aperture Radar, Strategic Techology Office DARPA-BAA-12-41 United States 2012

    [9]

    Ding J S, Kahl M, Loffeld O, et al. 2013 IEEE Trans. on Terahertz Sci. Techol. 3 606

    [10]

    China Academy of Engineering Physics THz Communication and Radar Technology Obtained Significant Breakthrough 2012 (in Chinese) [中国工程物理研究院太赫兹通信和雷达技术取得重要突破 2012 信息与电子工程]

    [11]

    Gao X, Li C, Gu S M, Fang G Y 2012 IEEE Antennas and Wireless Propaga. Lett. 11 787

    [12]

    Gao X, Li C, Fang G Y 2013 Chin. Phys. Lett. 30 068401

    [13]

    Gao X, Li C, Fang G Y 2014 Chin. Phys. B 23 028401

    [14]

    Zhang B, Pi Y M, Yang X B 2013 IEEE International Conference on Communications, June 2013 p921

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [3] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [4] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术. 物理学报, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [5] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [6] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [7] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [10] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [11] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [12] 张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭. Non-Kolmogorov湍流大气中小尺度热晕效应线性理论. 物理学报, 2017, 66(24): 244210. doi: 10.7498/aps.66.244210
    [13] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [14] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制. 物理学报, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [15] 孙青, 杨奕, 邓玉强, 孟飞, 赵昆. 利用非锁定飞秒激光实现太赫兹频率的精密测量. 物理学报, 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [16] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [17] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [18] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [19] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [20] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
计量
  • 文章访问数:  5191
  • PDF下载量:  841
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-25
  • 修回日期:  2014-03-21
  • 刊出日期:  2014-07-05

/

返回文章
返回