搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究

侯育花 黄有林 刘仲武 曾德长

稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究

侯育花, 黄有林, 刘仲武, 曾德长
PDF
导出引用
导出核心图
  • 尖晶石型铁氧体是十分重要的磁性材料之一, 具有独特的物理性质、化学特性、磁学特性和电子特性. 其中尖晶石型钴铁氧体具有较好的电磁性质而被广泛应用. 本文基于密度泛函理论(DFT) 的第一性原理平面波赝势法, 结合广义梯度近似(GGA+U), 研究了CoRE0.125Fe1.875O4 (RE = Nd, Eu, Gd)体系的电子结构和磁性能. 结果表明随着稀土元素从Nd到Gd掺杂体系晶胞的晶格常数呈递减趋势. 磁性能依赖于稀土离子(RE3+)4f轨道未配对的电子数, 掺杂Eu和Gd能够提高钴铁氧体体系的磁矩, 主要因为它们3+价态离子具有较多未配对的4f电子, 因而对磁性能的影响较大. 然而Nd 的掺杂对体系磁性能的影响很小, 这是由于它的离子半径较大, 导致晶格发生畸变.
    • 基金项目: 国家自然科学基金(批准号: 11304146, 51401103)和江西省教育厅基金(批准号: GJJ13484)资助的课题.
    [1]

    Niizeki T, Utsumi Y, Aoyama R, Yanagihara H, Inoue J, Yamasaki Y, Koike H N, Kita E 2013 Appl. Phys. Lett. 103 162407

    [2]

    Wang J Z, Fang Q Q 2004 Acta. Phys. Sin. 53 3186 (in Chinese) [汪金芝, 方庆清 2004 物理学报 53 3186]

    [3]

    Murugesan C, Perumal M, Chandrasekaran G 2014 Physica B 44 853

    [4]

    Shang Z F, Qi W H, Ji D H, Xu J, Tang G D, Zhang Xiao Y, Li Z Z, Lang L 2014 Chin. Phys. B 23 107503

    [5]

    Li G M, Wang L C, Xu Y 2014 Chin. Phys. B 23 088105

    [6]

    EI Hachimi A G, Zaari H, Benyoussef A, EI Yadari M, EI Kenz A 2014 J. Rare Earth 32 715

    [7]

    He J Q, Wang Y, Yan M F, Pan Z Y, Guo L X 2013 Chin. Phys. B 22 027102

    [8]

    Nikumbh A K Pawar R A, Nighot D V, Gugale G S, Sangale M D, Khanvilkar M B, Nagawade A V 2014 J. Magn. Magn. Mater. 355 201

    [9]

    Zhao L J, Yang H, Zhao X P, Yu L X, Cui Y M, Feng S H 2006 Mater. Lett. 60 1

    [10]

    Ben Tahar L, Artus M, Ammar S, Smiri L S, Herbst F, Vaulay M J, Richard V, Grenéche J M, Villain F, Fiévet F 2008 J. Magn. Magn. Mater. 320 3242

    [11]

    Panda R N, Shih J C, Chin T S 2003 J. Magn. Magn. Mater. 257 79

    [12]

    Ben Tahar L, Smiri L S, Artus M, Joudrier A-L, Herbst F, Vaulay M J, Ammar S, Fiévet F 2007 Mater. Res. Bull. 42 1888

    [13]

    Peng J H, Hojamberdiev M, Xu Y H, Cao B W, Wang J, Wu H 2011 J. Magn. Magn. Mater. 323 133

    [14]

    Cheng F X, Jia J T, Xu Z G 1999 J. Appl. Phys. 86 2727

    [15]

    Hou Y H, Zhao Y J, Liu Z W, Yu H Y, Zhong X C, Qiu W Q, Zeng D C, Wen L S 2010 J. Phys. D: Appl. Phys. 43 445003

    [16]

    Hou Y H, Zhao Y J, Liu Z W, Yu H Y, Zhong X C, Qiu W Q, Zeng D C 2011 J. Appl. Phys. 109 07A502

    [17]

    Huang Y L, Hou Y H Zhao Y J, Liu Z W, Zeng D C Ma S C 2013 Acta Phys. Sin. 62 167502 (in Chinese) [黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿 2013 物理学报 62 167502]

    [18]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [19]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [24]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [25]

    Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys.: Condens. Matter. 9 767

    [26]

    Shannon R D 1976 Acta Cryst. A 32 751

    [27]

    Pileni M P 2001 Adv. Funct. Mater. 11 323

  • [1]

    Niizeki T, Utsumi Y, Aoyama R, Yanagihara H, Inoue J, Yamasaki Y, Koike H N, Kita E 2013 Appl. Phys. Lett. 103 162407

    [2]

    Wang J Z, Fang Q Q 2004 Acta. Phys. Sin. 53 3186 (in Chinese) [汪金芝, 方庆清 2004 物理学报 53 3186]

    [3]

    Murugesan C, Perumal M, Chandrasekaran G 2014 Physica B 44 853

    [4]

    Shang Z F, Qi W H, Ji D H, Xu J, Tang G D, Zhang Xiao Y, Li Z Z, Lang L 2014 Chin. Phys. B 23 107503

    [5]

    Li G M, Wang L C, Xu Y 2014 Chin. Phys. B 23 088105

    [6]

    EI Hachimi A G, Zaari H, Benyoussef A, EI Yadari M, EI Kenz A 2014 J. Rare Earth 32 715

    [7]

    He J Q, Wang Y, Yan M F, Pan Z Y, Guo L X 2013 Chin. Phys. B 22 027102

    [8]

    Nikumbh A K Pawar R A, Nighot D V, Gugale G S, Sangale M D, Khanvilkar M B, Nagawade A V 2014 J. Magn. Magn. Mater. 355 201

    [9]

    Zhao L J, Yang H, Zhao X P, Yu L X, Cui Y M, Feng S H 2006 Mater. Lett. 60 1

    [10]

    Ben Tahar L, Artus M, Ammar S, Smiri L S, Herbst F, Vaulay M J, Richard V, Grenéche J M, Villain F, Fiévet F 2008 J. Magn. Magn. Mater. 320 3242

    [11]

    Panda R N, Shih J C, Chin T S 2003 J. Magn. Magn. Mater. 257 79

    [12]

    Ben Tahar L, Smiri L S, Artus M, Joudrier A-L, Herbst F, Vaulay M J, Ammar S, Fiévet F 2007 Mater. Res. Bull. 42 1888

    [13]

    Peng J H, Hojamberdiev M, Xu Y H, Cao B W, Wang J, Wu H 2011 J. Magn. Magn. Mater. 323 133

    [14]

    Cheng F X, Jia J T, Xu Z G 1999 J. Appl. Phys. 86 2727

    [15]

    Hou Y H, Zhao Y J, Liu Z W, Yu H Y, Zhong X C, Qiu W Q, Zeng D C, Wen L S 2010 J. Phys. D: Appl. Phys. 43 445003

    [16]

    Hou Y H, Zhao Y J, Liu Z W, Yu H Y, Zhong X C, Qiu W Q, Zeng D C 2011 J. Appl. Phys. 109 07A502

    [17]

    Huang Y L, Hou Y H Zhao Y J, Liu Z W, Zeng D C Ma S C 2013 Acta Phys. Sin. 62 167502 (in Chinese) [黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿 2013 物理学报 62 167502]

    [18]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [19]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [24]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [25]

    Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys.: Condens. Matter. 9 767

    [26]

    Shannon R D 1976 Acta Cryst. A 32 751

    [27]

    Pileni M P 2001 Adv. Funct. Mater. 11 323

  • [1] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [2] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [3] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [4] 张建民, 李姝丽. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [5] 丁俊, 文黎巍, 王玉梅, 裴慧霞. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [6] 李忠虎, 李林, 朱林. W形六角铁氧体BaFe18O27电子结构与导电性的第一性原理研究. 物理学报, 2011, 60(10): 107102. doi: 10.7498/aps.60.107102
    [7] 江学范, 罗礼进, 仲崇贵, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [8] 王新强, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀, 程志梅, 王风. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [9] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [10] 李忠虎, 李林, 祁阳. BaCoxZn2-xFe16O27六角铁氧体电子结构与介电特性的第一性原理研究. 物理学报, 2012, 61(20): 207102. doi: 10.7498/aps.61.207102
    [11] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [12] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [13] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究. 物理学报, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [14] 杨银堂, 武 军, 丁瑞雪, 宋久旭, 石立春, 蔡玉荣. p型K:ZnO导电机理的第一性原理研究. 物理学报, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [15] 罗华锋, 王藩侯, 袁娣, 黄多辉. Zn,O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2011, 60(7): 077101. doi: 10.7498/aps.60.077101
    [16] 袁娣, 黄多辉, 罗华锋. Be, O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2012, 61(14): 147101. doi: 10.7498/aps.61.147101
    [17] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO. 物理学报, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [18] 宋福展, 沈湘黔, 褚艳秋, 向军. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [19] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [20] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
  • 引用本文:
    Citation:
计量
  • 文章访问数:  972
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-16
  • 修回日期:  2014-09-13
  • 刊出日期:  2015-02-05

稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究

  • 1. 南昌航空大学材料科学与工程学院, 南昌 330063;
  • 2. 华南理工大学材料科学与工程学院, 广州 510641
    基金项目: 

    国家自然科学基金(批准号: 11304146, 51401103)和江西省教育厅基金(批准号: GJJ13484)资助的课题.

摘要: 尖晶石型铁氧体是十分重要的磁性材料之一, 具有独特的物理性质、化学特性、磁学特性和电子特性. 其中尖晶石型钴铁氧体具有较好的电磁性质而被广泛应用. 本文基于密度泛函理论(DFT) 的第一性原理平面波赝势法, 结合广义梯度近似(GGA+U), 研究了CoRE0.125Fe1.875O4 (RE = Nd, Eu, Gd)体系的电子结构和磁性能. 结果表明随着稀土元素从Nd到Gd掺杂体系晶胞的晶格常数呈递减趋势. 磁性能依赖于稀土离子(RE3+)4f轨道未配对的电子数, 掺杂Eu和Gd能够提高钴铁氧体体系的磁矩, 主要因为它们3+价态离子具有较多未配对的4f电子, 因而对磁性能的影响较大. 然而Nd 的掺杂对体系磁性能的影响很小, 这是由于它的离子半径较大, 导致晶格发生畸变.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回