搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

左手介质对谐振腔谐振频率的影响

李培 王辅忠 张丽珠 张光璐

左手介质对谐振腔谐振频率的影响

李培, 王辅忠, 张丽珠, 张光璐
PDF
导出引用
导出核心图
  • 在谐振腔设计过程中, 谐振腔的品质因数以及谐振频率都是需要考虑的关键因素. 传统的方法是通过减小谐振腔的尺寸或者利用高次模来提高谐振腔的谐振频率, 但是由于两种方法都有其局限性, 导致设计结果并不理想. 通过理论计算与模拟仿真相结合的方法, 对影响谐振腔谐振频率的因素进行分析, 得出了填充介质的材料属性与谐振腔谐振频率的关系. 理论计算显示: 当用“左手介质”作为谐振腔的填充物质时, 可以在不改变谐振腔尺寸的基础上提高谐振频率. 高频结构仿真器(high frequency structure simulator)的仿真数据也证明了以上结果, 从而得出谐振腔的谐振频率可以不受谐振腔尺寸的限制. 相较于传统理论而言, 研究结论有进一步的发展, 为探索和设计新颖的谐振腔提供了理论依据.
    • 基金项目: 国家自然科学基金(批准号:61271011)和天津市自然科学基金(批准号:14JCYBJC17100)资助的课题.
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Caloz C 2009 Mater. Today 12 12

    [3]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [4]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [5]

    Wang D, Qin F, Wen J, Chen D M, Jin X, An H S, Zhang X K 2012 Chin. Phys. B 21 084101

    [6]

    Luo C, Johnson S G, Joannopoulos J D 2002 Appl. Phys. Lett. 81 2352

    [7]

    Si L M, Hou J X, Liu Y, L X 2014 Acta Phys. Sin. 63 027802 (in Chinese) [司黎明, 侯吉旋, 刘埇, 吕昕 2014 物理学报 63 027802]

    [8]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [9]

    Parazzoli C G, Greegor R B, Nielsen J A 2004 Appl. Phys. Lett. 84 3232

    [10]

    Smith D R, Vier D C, Kroll N 2000 Appl. Phys. Lett. 77 2246

    [11]

    Parazzoli C G, Greegor R B, Li K 2003 Phys. Rev. Lett. 90 107401

    [12]

    Luo J R, Cui J, Zhu M 2013 Chin. Phys. B 22 067803

    [13]

    Iyer A, Kremer P, Eleftheriades G 2003 Opt. Express 11 696

    [14]

    Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107

    [15]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Nature 423 604

    [16]

    Kong J A, Wu B I, Zhang Y 2002 Microwave Opt. Technol. Lett. 33 136

    [17]

    Cui T J, Kong J A 2004 Phys. Rev. B 70 205106

    [18]

    Cui T J, Kong J A 2004 Phys. Rev. B 70 165113

    [19]

    Grzegorczyk T M, Kong J A 2006 Phys. Rev. B 74 033102

    [20]

    Pendry J B, Holden A J, Robbins D J 1998 J. Phys.: Condens. Matter 10 4785

    [21]

    Chang Q Z, Cun J R, Ding Z 2014 Chin. Phys. B 23 088401

    [22]

    Xiang Y J, Wen S C, Dai X Y 2008 Chin. J. Lasers 6 002

    [23]

    Yamada H, Chayahara A, Mokuno Y 2006 Diam. Relat. Mater. 15 1395

    [24]

    Wang Z P, Wu L H, Zhang X L 2008 Metamaterials,2008 International Workshop on Nanjing, China, November 9-12, 2008 p91

    [25]

    Hashemi M R, Itoh T 2008 Microwave Symposium Digest, 2008 IEEE MTT-S International Atlanta, USA, June 15-20, 2008 p331

    [26]

    Chen B L 2005 Optimization Theory and Algorithms (Beijing: Tsinghua University Press Ltd.) pp203-243 (in Chinese) [陈宝林 2005 最优化理论与算法 (北京: 清华大学出版社) 第203-243页]

    [27]

    Cheng E 1994 The Foundation of Microwave Technology (Xi’an: Xidian University Press) pp220-264 (in Chinese) [承恩 1994 微波技术基础 (西安: 西安电子科技大学出版社) 第220-264页]

    [28]

    Fang S J, Jin H, Tai Y C 2009 Microwave Technology (Beijing: Beijing University of Posts and Telecommunications Press) pp109-129 (in Chinese) [房少军, 金红, 邰佑诚 2009 微波技术(北京: 北京邮电大学出版社)第109-129页]

    [29]

    Li M Y, Liu M 2010 Detailed Design Applications HFSS Electromagnetic Simulation (Beijing: The People’s Posts and Telecommunications Press) pp267-283 (in Chinese) [李明洋, 刘敏 2010 HFSS电磁仿真设计应用详解 (北京: 人民邮电出版社) 第267-283页]

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Caloz C 2009 Mater. Today 12 12

    [3]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [4]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [5]

    Wang D, Qin F, Wen J, Chen D M, Jin X, An H S, Zhang X K 2012 Chin. Phys. B 21 084101

    [6]

    Luo C, Johnson S G, Joannopoulos J D 2002 Appl. Phys. Lett. 81 2352

    [7]

    Si L M, Hou J X, Liu Y, L X 2014 Acta Phys. Sin. 63 027802 (in Chinese) [司黎明, 侯吉旋, 刘埇, 吕昕 2014 物理学报 63 027802]

    [8]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [9]

    Parazzoli C G, Greegor R B, Nielsen J A 2004 Appl. Phys. Lett. 84 3232

    [10]

    Smith D R, Vier D C, Kroll N 2000 Appl. Phys. Lett. 77 2246

    [11]

    Parazzoli C G, Greegor R B, Li K 2003 Phys. Rev. Lett. 90 107401

    [12]

    Luo J R, Cui J, Zhu M 2013 Chin. Phys. B 22 067803

    [13]

    Iyer A, Kremer P, Eleftheriades G 2003 Opt. Express 11 696

    [14]

    Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107

    [15]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Nature 423 604

    [16]

    Kong J A, Wu B I, Zhang Y 2002 Microwave Opt. Technol. Lett. 33 136

    [17]

    Cui T J, Kong J A 2004 Phys. Rev. B 70 205106

    [18]

    Cui T J, Kong J A 2004 Phys. Rev. B 70 165113

    [19]

    Grzegorczyk T M, Kong J A 2006 Phys. Rev. B 74 033102

    [20]

    Pendry J B, Holden A J, Robbins D J 1998 J. Phys.: Condens. Matter 10 4785

    [21]

    Chang Q Z, Cun J R, Ding Z 2014 Chin. Phys. B 23 088401

    [22]

    Xiang Y J, Wen S C, Dai X Y 2008 Chin. J. Lasers 6 002

    [23]

    Yamada H, Chayahara A, Mokuno Y 2006 Diam. Relat. Mater. 15 1395

    [24]

    Wang Z P, Wu L H, Zhang X L 2008 Metamaterials,2008 International Workshop on Nanjing, China, November 9-12, 2008 p91

    [25]

    Hashemi M R, Itoh T 2008 Microwave Symposium Digest, 2008 IEEE MTT-S International Atlanta, USA, June 15-20, 2008 p331

    [26]

    Chen B L 2005 Optimization Theory and Algorithms (Beijing: Tsinghua University Press Ltd.) pp203-243 (in Chinese) [陈宝林 2005 最优化理论与算法 (北京: 清华大学出版社) 第203-243页]

    [27]

    Cheng E 1994 The Foundation of Microwave Technology (Xi’an: Xidian University Press) pp220-264 (in Chinese) [承恩 1994 微波技术基础 (西安: 西安电子科技大学出版社) 第220-264页]

    [28]

    Fang S J, Jin H, Tai Y C 2009 Microwave Technology (Beijing: Beijing University of Posts and Telecommunications Press) pp109-129 (in Chinese) [房少军, 金红, 邰佑诚 2009 微波技术(北京: 北京邮电大学出版社)第109-129页]

    [29]

    Li M Y, Liu M 2010 Detailed Design Applications HFSS Electromagnetic Simulation (Beijing: The People’s Posts and Telecommunications Press) pp267-283 (in Chinese) [李明洋, 刘敏 2010 HFSS电磁仿真设计应用详解 (北京: 人民邮电出版社) 第267-283页]

  • [1] 杨 锐, 谢拥军, 王 鹏, 杨同敏. 含有左手介质双层基底的亚波长谐振腔微带天线研究. 物理学报, 2007, 56(8): 4504-4508. doi: 10.7498/aps.56.4504
    [2] 傅佳辉, 孟繁义, 杨国辉, 吴 群, 刘心蕾. 基于非分裂FDTD的左手介质电磁特性的研究. 物理学报, 2008, 57(7): 4070-4075. doi: 10.7498/aps.57.4070
    [3] 武明峰, 孟繁义, 吴 群, 吴 健. 基于DGS和双层SRRs结构的左手介质微带线的设计. 物理学报, 2006, 55(11): 5790-5794. doi: 10.7498/aps.55.5790
    [4] 武明峰, 孟繁义, 吴 群, 吴 健. 基于左手介质后向波特性的微带天线小型化研究. 物理学报, 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [5] 姜永远, 张永强, 时红艳, 侯春风, 孙秀冬. 单轴各向异性左手介质表面的Goos-H?nchen位移. 物理学报, 2007, 56(2): 798-804. doi: 10.7498/aps.56.798
    [6] 武明峰, 孟繁义, 傅佳辉, 吴 群, 吴 健. 新型小型化的平面左手介质微带线及其后向波特性验证. 物理学报, 2008, 57(2): 822-826. doi: 10.7498/aps.57.822
    [7] 柏宁丰, 洪玮, 孙小菡. 复合缺陷型电磁帯隙谐振腔. 物理学报, 2011, 60(1): 018401. doi: 10.7498/aps.60.018401
    [8] 雷朝军, 喻胜, 李宏福, 牛新建, 刘迎辉, 候慎勇, 张天钟. 缓变回旋管谐振腔研究. 物理学报, 2012, 61(18): 180202. doi: 10.7498/aps.61.180202
    [9] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [10] 方进勇, 江伟华, 黄惠军, 张治强, 黄文华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
  • 引用本文:
    Citation:
计量
  • 文章访问数:  510
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-13
  • 修回日期:  2014-12-22
  • 刊出日期:  2015-06-20

左手介质对谐振腔谐振频率的影响

  • 1. 天津工业大学理学院, 天津 300387;
  • 2. 天津职业技术师范大学理学院, 天津 300222
    基金项目: 

    国家自然科学基金(批准号:61271011)和天津市自然科学基金(批准号:14JCYBJC17100)资助的课题.

摘要: 在谐振腔设计过程中, 谐振腔的品质因数以及谐振频率都是需要考虑的关键因素. 传统的方法是通过减小谐振腔的尺寸或者利用高次模来提高谐振腔的谐振频率, 但是由于两种方法都有其局限性, 导致设计结果并不理想. 通过理论计算与模拟仿真相结合的方法, 对影响谐振腔谐振频率的因素进行分析, 得出了填充介质的材料属性与谐振腔谐振频率的关系. 理论计算显示: 当用“左手介质”作为谐振腔的填充物质时, 可以在不改变谐振腔尺寸的基础上提高谐振频率. 高频结构仿真器(high frequency structure simulator)的仿真数据也证明了以上结果, 从而得出谐振腔的谐振频率可以不受谐振腔尺寸的限制. 相较于传统理论而言, 研究结论有进一步的发展, 为探索和设计新颖的谐振腔提供了理论依据.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回