搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声脉冲法空间电荷测量系统的研究

刘康淋 廖瑞金 赵学童

引用本文:
Citation:

声脉冲法空间电荷测量系统的研究

刘康淋, 廖瑞金, 赵学童

Measurement of space charges in air based on sound pulse method

Liu Kang-Lin, Liao Rui-Jin, Zhao Xue-Tong
PDF
导出引用
  • 气体中空间电荷的分布与电晕放电的机理紧密相关, 获取电晕放电过程中空间电荷分布对深入研究电晕放电起始、自持过程有着重要作用, 但是如何准确获得电晕放电过程中的空间电荷分布一直是国际上尚未解决的难题. 本文基于声脉冲法提出一种电场信号解耦算法, 推导了空间电荷在声场中被调制产生的电场信号与声脉冲信号和空间电荷密度之间的数值关系, 讨论了不同测量情况下声发射系统的设计要求; 搭建了一套可用于实时测量针板电极电晕放电空间电荷分布的非接触式测量系统, 该系统主要包括声脉冲发生模块、空间电荷模块及电场信号解耦算法模块. 运用该系统实现了声脉冲激发作用下电场信号的测量, 通过提出的电场信号解耦算法得到了空间电荷密度, 对其测量结果与电晕电流法测量结果进行比较, 验证了电场信号解耦算法的有效性. 该算法可以应用于空间电荷一维、二维和三维测量系统中.
    The space charge in air is closely related to the mechanism of corona discharge. In order to study the onset and sustainability of corona discharge, acquiring the distribution of space charge is necessary but there still exists a puzzle which has not been settled. According to the sound pulse method, in this paper we present a kind of signal processing algorithm to analyze the electric field which is generated by modulating the space charge in the sound field. The electric filed is dependent on the form of sound emission and space charge density. The waveform of electric field is related to space charge density. Through the proposed algorithm, the space charge density can be obtained by analyzing electric field signal. The area in which the space charges need to be measured, is divided into elements. Each element is small enough so that the space charge quantity in each element is assumed to be the same. The following assumption is accepted during numerical simulation: space charge densities in the wave fronts are the same. The curve of electric field produced, received by electric field antenna, is the vector sum of electric filed produced by each element, and then calculated by numerical simulation. In order to satisfy the assumption in each measurement case, the requirements for sound emission system under different cases are discussed. In different cases, different sound emission systems are required. For space charges which are distributed uniformly, plane wave or spherical wave is suitable; for one-dimensional space charge distribution, plane wave is necessary; for space charge two-dimensional or three-dimensional space charge distribution, plane wave array is availed. What is more, a corresponding measuring system is developed which can be used for measuring the space charge density. This system mainly contains the producing of sound pulse, producing of space charges and the receiving of electric field signal. The producing of sound pulse is designed according to the measurement requirement for multi-needle-to-plate geometry which is assumed that space charge is distributed uniformly in the gap. With the experimental model, the space charge density in multi-needle-to-plate geometry is calculated according to the algorithm proposed in this paper. The result is compared with the calculated one by the method of corona currents, verifying the proposed method.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB209401)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB209401).
    [1]

    Liu Z Y 2005 Ultra-high Grid (Beijing: China Economic Publishing) (in Chinese) [刘振亚 2005 特高压电网(北京: 中国经济出版社)]

    [2]

    Shu Y B, Hu Y 2007 Proc. CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]

    [3]

    Sarma M P, Janischewskyj W 1969 IEEE Trans. Power Apparatus and Systems 10 1476

    [4]

    Janischewskyj W, Cela G 1979 IEEE Transactions on Power Apparatus and Systems PAS-98 1000

    [5]

    Takuma T, Ikeda T, Kawamoto T 1987 IEEE Trans. Power Apparatus and Systems 12 4802

    [6]

    Li X 1997 Ph. D. Dissertation (Winnipeg: University of Manitoba)

    [7]

    Lu T, Feng H, Zhao Z, Cui X 2007 IEEE Trans. Magn. 43 122

    [8]

    Lu T, Feng H, Cui X, Zhao Z B, Li L 2010 IEEE Trans. Magn. 46 2939

    [9]

    Zhou X X, Lu T B, Cui X, Zhen Y Z, Luo Z N 2011 Proc. CSEE 31 127 (in Chinese) [周象贤, 卢铁兵, 崔翔, 甄永赞, 罗兆楠 2011 中国电机工程学报 31 127]

    [10]

    Wu F F, Liao R J, Yang L J, Liu X H, Wang K, Zhou Z 2013 Acta Phys. Sin. 62 115201 (in Chinese) [伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之 2013 物理学报 62 115201]

    [11]

    Wu F F, Liao R J, Wang K, Yang L J, Grzybowski S 2014 IEEE Trans. Plasma Sci. 42 868

    [12]

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201 (in Chinese) [廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 物理学报 61 245201]

    [13]

    Liao R J, Liu K L, Wu F F, Yang L J, Zhou Z 2014 High Voltage Engineering 40 965 (in Chinese) [廖瑞金, 刘康淋, 伍飞飞, 杨丽君, 周之 2014 高电压技术 40 965]

    [14]

    Hazmi A, Takagi N, Wang D, Watanabe T 2007 Sensors 7 3058

    [15]

    Fahy F 2002 Sound Intensity (Vol. 2)(London and New York: Spon Press)

  • [1]

    Liu Z Y 2005 Ultra-high Grid (Beijing: China Economic Publishing) (in Chinese) [刘振亚 2005 特高压电网(北京: 中国经济出版社)]

    [2]

    Shu Y B, Hu Y 2007 Proc. CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]

    [3]

    Sarma M P, Janischewskyj W 1969 IEEE Trans. Power Apparatus and Systems 10 1476

    [4]

    Janischewskyj W, Cela G 1979 IEEE Transactions on Power Apparatus and Systems PAS-98 1000

    [5]

    Takuma T, Ikeda T, Kawamoto T 1987 IEEE Trans. Power Apparatus and Systems 12 4802

    [6]

    Li X 1997 Ph. D. Dissertation (Winnipeg: University of Manitoba)

    [7]

    Lu T, Feng H, Zhao Z, Cui X 2007 IEEE Trans. Magn. 43 122

    [8]

    Lu T, Feng H, Cui X, Zhao Z B, Li L 2010 IEEE Trans. Magn. 46 2939

    [9]

    Zhou X X, Lu T B, Cui X, Zhen Y Z, Luo Z N 2011 Proc. CSEE 31 127 (in Chinese) [周象贤, 卢铁兵, 崔翔, 甄永赞, 罗兆楠 2011 中国电机工程学报 31 127]

    [10]

    Wu F F, Liao R J, Yang L J, Liu X H, Wang K, Zhou Z 2013 Acta Phys. Sin. 62 115201 (in Chinese) [伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之 2013 物理学报 62 115201]

    [11]

    Wu F F, Liao R J, Wang K, Yang L J, Grzybowski S 2014 IEEE Trans. Plasma Sci. 42 868

    [12]

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201 (in Chinese) [廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 物理学报 61 245201]

    [13]

    Liao R J, Liu K L, Wu F F, Yang L J, Zhou Z 2014 High Voltage Engineering 40 965 (in Chinese) [廖瑞金, 刘康淋, 伍飞飞, 杨丽君, 周之 2014 高电压技术 40 965]

    [14]

    Hazmi A, Takagi N, Wang D, Watanabe T 2007 Sensors 7 3058

    [15]

    Fahy F 2002 Sound Intensity (Vol. 2)(London and New York: Spon Press)

  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] 柴钰, 张妮, 刘杰, 殷宁, 刘树林, 张晶园. 微尺度下N2–O2电晕放电的动态特性二维仿真. 物理学报, 2020, 69(16): 165202. doi: 10.7498/aps.69.20200095
    [3] 郭榕榕, 林金海, 刘莉莉, 李世韦, 王尘, 林海军. CdZnTe晶体中深能级缺陷对空间电荷分布特性的影响. 物理学报, 2020, 69(22): 226103. doi: 10.7498/aps.69.20200553
    [4] 李丽丽, 张晓虹, 王玉龙, 国家辉. 电场和温度对聚合物空间电荷陷阱性能的影响. 物理学报, 2017, 66(8): 087201. doi: 10.7498/aps.66.087201
    [5] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [6] 梁铭辉, 郑飞虎, 安振连, 张冶文. 基于Monte Carlo的热脉冲法数据分析. 物理学报, 2016, 65(7): 077702. doi: 10.7498/aps.65.077702
    [7] 李维勤, 张海波, 鲁君. 非聚焦电子束照射SiO2薄膜带电效应. 物理学报, 2012, 61(2): 027302. doi: 10.7498/aps.61.027302
    [8] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [9] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [10] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [11] 屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁. 以能带理论诠释直流聚乙烯绝缘中空间电荷的形成和抑制机理. 物理学报, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [12] 陈暄, 安振连, 刘晨霞, 张冶文, 郑飞虎. 表层氟化温度对聚乙烯中空间电荷积累的影响. 物理学报, 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [13] 安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文. 表层氟化聚乙烯中的空间电荷. 物理学报, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [14] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [15] 肖春, 张冶文, 林家齐, 郑飞虎, 安振连, 雷清泉. 聚乙烯薄膜中空间电荷短路放电复合率的发光法研究. 物理学报, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [16] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性. 物理学报, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [17] 杨 强, 安振连, 郑飞虎, 张冶文. 线性低密度聚乙烯中空间电荷陷阱的能量分布与空间分布的关系. 物理学报, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [18] 安振连, 杨 强, 郑飞虎, 张冶文. 低密度聚乙烯热压成型过程中的空间电荷. 物理学报, 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [19] 郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福. 用于固体介质中空间电荷的压电压力波法与电声脉冲法. 物理学报, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
    [20] 孙万钧, 周忠祥, 姜永远, 李焱, 许克彬, 祝桂芝. 外加电场对掺杂KNSBN晶体空间电荷场的影响. 物理学报, 1996, 45(6): 940-945. doi: 10.7498/aps.45.940
计量
  • 文章访问数:  6021
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-19
  • 修回日期:  2015-03-12
  • 刊出日期:  2015-08-05

/

返回文章
返回