搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流场环境下复杂囊泡的动力学行为

邓真渝 章林溪

引用本文:
Citation:

流场环境下复杂囊泡的动力学行为

邓真渝, 章林溪

Dynamics of complex vesicles in shear flow

Deng Zhen-Yu, Zhang Lin-Xi
PDF
导出引用
  • 采用非平衡态分子动力学方法研究了二维复杂囊泡在剪切流中的动力学行为. 模拟发现了复杂囊泡经典的翻滚(tumbling)、摇摆(trembling)和坦克履(tank-treading)行为, 还观察到由坦克履行为向平动行为(translating)的转变. 囊泡的平动行为与剪切率大小、复杂囊泡的形状密切相关. 当大囊泡均匀嫁接较多数目的小囊泡后, 其平动方式消失. 该研究有益于加深对囊泡在剪切流场中复杂性行为的理解.
    Vesicles exposed to shear flow exhibit a remarkably rich dynamics. With the increase of shear rate, one can observe a tumbling-to-tank-treading transition. Besides, a complex oscillating motion, which has alternatively been called trembling, swinging, or vacillating breathing, has also been predicted theoretically and observed experimentally. While in biological systems, vesicles are always decorated by a large number of macromolecules, rendering the dynamics of vesicles in shear flow much more complex. As a powerful supplement to analytical techniques, the dissipative particle dynamics has been proved to be a useful tool in simulating nonequilibrium behaviors under shear. By replacing the conservative force in dissipative particle dynamics with a repulsive Lennard-Jones potential, the density distortion has been overcome and the no-slip boundary condition is achieved. In this article, a nonequilibrium molecular dynamic method is used to study the dynamics of two-dimensional complex vesicles in shear flow. The dynamical behaviors of the complex vesicles are closely related to shear rate and the size of small grafting vesicle. We first consider a vesicle with two small vesicles symmetrically grafted. At a weak flow, the complex vesicle maintains its equilibrium shape and undergoes an unsteady flipping motion, known as tumbling motion. At a moderate shear rate, the tumbling of the vesicle is accompanied with strong shape oscillation, which is consistent with Yazdani's simulation, in which a breathing-with-tumbling type of motion is observed, and is called trembling in this article. As the shear rate further increases, the vesicle is oriented at a fixed angle with respect to the flow direction, while the vesicle membrane circulates around its surface area, exhibiting a well-known tank-treading motion. For sufficiently large grafted vesicles and at a high enough shear rate, a transition from tank-treading to translating motion is observed, in which the flipping of the vesicle or the circulating of the vesicle membrane is hampered. A crossover regime, namely, the tank-treading/translating mixture motion is also found, where translating motion alternates with tank-treading chaotically. However, when a sufficient number of small vesicles are uniformly grafted to the vesicle, the newly observed translating motion is eliminated. This study can give a deeper insight into the complexity of vesicle motions in shear flow.
    • 基金项目: 国家自然学科基金(批准号: 21174131, 21374102)和国家自然学科基金重点项目(批准号: 20934004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21174131, 21374102) and the Key Program of the National Natural Science Foundation of China (Grant No. 20934004).
    [1]

    Noguchi H, Gompper G 2007 Phys. Rev. Lett. 98 128103

    [2]

    de Haas K, Blom C, van den Ende D, Duits M H G, Mellema J 1997 Phys. Rev. E 56 7132

    [3]

    Kantsler V, Steinberg V 2005 Phys. Rev. Lett. 95 258101

    [4]

    Zabusky N J, Segre E, Deschamps J, Kantsler V, Steinberg V 2011 Phys. Fluids 23 041905

    [5]

    Yazdani A Z K, Bagchi P 2011 Phys. Rev. E 84 026314

    [6]

    Doebereiner H G, Evans E, Krauss M, Seifert U, Wortis M 1997 Phys. Rev. E 55 4458

    [7]

    Guo K, Wang J, Qiu F, Zhang H, Yang Y 2009 Soft Matter 5 1646

    [8]

    Soddemann T, Dünweg B, Kremer K 2003 Phys. Rev. E 68 046702

    [9]

    Finken R, Lamura A, Seifert U, Gompper G 2008 Eur. Phys. J. E 25 309

    [10]

    Deng Z Y, Zhang D, Zhang L X 2015 Materials Today Comm. 3 130

    [11]

    Kaoui B, Biros G, Misbah C 2009 Phys. Rev. Lett. 103 188101

    [12]

    Kaoui B, Ristow G H, Cantat I, Misbah C, Zimmermann W 2008 Phys. Rev. E 77 021903

    [13]

    Kaoui B, Kruger T, Harting J 2013 Soft Matter 9 8057

    [14]

    Wen X H, Zhang D, Zhang L X 2012 Polymer 53 873

    [15]

    Bai Z Q, Guo H X 2013 Polymer 54 2146

    [16]

    Plimpton S J 1995 J. Comput. Phys. 117 1

  • [1]

    Noguchi H, Gompper G 2007 Phys. Rev. Lett. 98 128103

    [2]

    de Haas K, Blom C, van den Ende D, Duits M H G, Mellema J 1997 Phys. Rev. E 56 7132

    [3]

    Kantsler V, Steinberg V 2005 Phys. Rev. Lett. 95 258101

    [4]

    Zabusky N J, Segre E, Deschamps J, Kantsler V, Steinberg V 2011 Phys. Fluids 23 041905

    [5]

    Yazdani A Z K, Bagchi P 2011 Phys. Rev. E 84 026314

    [6]

    Doebereiner H G, Evans E, Krauss M, Seifert U, Wortis M 1997 Phys. Rev. E 55 4458

    [7]

    Guo K, Wang J, Qiu F, Zhang H, Yang Y 2009 Soft Matter 5 1646

    [8]

    Soddemann T, Dünweg B, Kremer K 2003 Phys. Rev. E 68 046702

    [9]

    Finken R, Lamura A, Seifert U, Gompper G 2008 Eur. Phys. J. E 25 309

    [10]

    Deng Z Y, Zhang D, Zhang L X 2015 Materials Today Comm. 3 130

    [11]

    Kaoui B, Biros G, Misbah C 2009 Phys. Rev. Lett. 103 188101

    [12]

    Kaoui B, Ristow G H, Cantat I, Misbah C, Zimmermann W 2008 Phys. Rev. E 77 021903

    [13]

    Kaoui B, Kruger T, Harting J 2013 Soft Matter 9 8057

    [14]

    Wen X H, Zhang D, Zhang L X 2012 Polymer 53 873

    [15]

    Bai Z Q, Guo H X 2013 Polymer 54 2146

    [16]

    Plimpton S J 1995 J. Comput. Phys. 117 1

  • [1] 李婷, 毕晓月, 孔婧文. 剪切形变下磷烯的力学和热学性能. 物理学报, 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [2] 李翔, 尹益辉, 张元章. α-Fe中氦泡极限压强的分子动力学模拟. 物理学报, 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [3] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [4] 杨俊升, 黄多辉. 环状聚合物及其对应的线性链熔体在启动剪切场下流变特性的分子动力学模拟研究. 物理学报, 2019, 68(13): 138301. doi: 10.7498/aps.68.20190403
    [5] 郑麟, 莫松平, 李玉秀, 陈颖, 徐进良. 薄层剪切二元颗粒分离过程动力学特性分析. 物理学报, 2019, 68(16): 164703. doi: 10.7498/aps.68.20190322
    [6] 段华, 李剑锋, 张红东. 二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究. 物理学报, 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [7] 盛洁, 王开宇, 马贝贝, 朱涛, 蒋中英. 多聚赖氨酸诱导的负电性磷脂巨囊泡形变. 物理学报, 2018, 67(15): 158701. doi: 10.7498/aps.67.20180456
    [8] 唐瀚玉, 王娜, 吴学邦, 刘长松. 剪切振动下湿颗粒的力学谱. 物理学报, 2018, 67(20): 206402. doi: 10.7498/aps.67.20180966
    [9] 张冉, 谢文佳, 常青, 李桦. 纳米通道内气体剪切流动的分子动力学模拟. 物理学报, 2018, 67(8): 084701. doi: 10.7498/aps.67.20172706
    [10] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [11] 张程宾, 于程, 刘向东, 金瓯, 陈永平. 剪切流场中双重乳液稳态形变. 物理学报, 2016, 65(20): 204704. doi: 10.7498/aps.65.204704
    [12] 沈壮志. 声驻波场中空化泡的动力学特性. 物理学报, 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [13] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟. 物理学报, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [14] 金叶青, 姚熊亮, 庞福振, 张阿漫. 均匀流中剪切变形加筋层合板声与振动特性研究. 物理学报, 2013, 62(13): 134306. doi: 10.7498/aps.62.134306
    [15] 夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫. 基于离散变分原理的耗散动力学模拟方法:模拟三维囊泡形状. 物理学报, 2013, 62(24): 248701. doi: 10.7498/aps.62.248701
    [16] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [17] 和兴锁, 宋明, 邓峰岩. 非惯性系下考虑剪切变形的柔性梁的动力学建模. 物理学报, 2011, 60(4): 044501. doi: 10.7498/aps.60.044501
    [18] 王晓东, 欧阳洁, 苏进. 非均匀剪切流场中液晶聚合物微观结构的无网格模拟. 物理学报, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [19] 刘永利, 赵星, 张宗宁, 张林, 王绍青, 叶恒强. TiAl/Ti3Al体系剪切变形的分子动力学研究. 物理学报, 2009, 58(13): 246-S253. doi: 10.7498/aps.58.246
    [20] 李剑锋, 张红东, 邱 枫, 杨玉良. 模拟囊泡形变动力学的新方法离散空间变分法. 物理学报, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
计量
  • 文章访问数:  5073
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-24
  • 修回日期:  2015-04-15
  • 刊出日期:  2015-08-05

/

返回文章
返回