搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于超材料的宽带、反射型90极化旋转体设计

韩江枫 曹祥玉 高军 李思佳 张晨

引用本文:
Citation:

一种基于超材料的宽带、反射型90极化旋转体设计

韩江枫, 曹祥玉, 高军, 李思佳, 张晨

Design of broadband reflective 90 polarization rotator based on metamaterial

Han Jiang-Feng, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zhang Chen
PDF
导出引用
  • 根据各向异性媒质理论, 设计了一种宽带、反射型超材料极化旋转体, 能够将线极化波极化方向旋转90, 极化转化率大于90%的工作带宽为5.514.5 GHz. 该极化旋转体由两层介质板、金属双开口谐振环和金属底板周期排列构成, 具有各向异性的特点, 单元两对角线方向的电场分量反射系数相同, 反射相位相差180, 导致其极化旋转特性. 利用表面电流分布图, 分析不同极化波入射时该极化旋转体的谐振状态, 实验和仿真结果符合较好. 该极化旋转体在新型天线设计和隐身技术等方面具有广阔的应用前景.
    Polarization is one of the basic properties of electromagnetic waves and is valuable in communication, navigation and radar detecting. So it is important to control and manipulate polarization states of electromagnetic waves. In this paper, we design, fabricate and measure a broadband reflective metamaterial 90 polarization rotator which has a double-split-ring resonator (DSRR) structure, composed of two layers of dielectric and a metal plate ground. The explanation of the physical mechanism of the polarization rotator is presented according to the anisotropy media theory. Anisotropic metamaterials can cause a phase or amplitude difference between two crossed polarization waves, which can be used to manipulate the polarization states of the incident waves. The anisotropic polarization rotator behaves different for two orthogonal axes, and the surface current distributions of the DSRR are discussed to analyse the different characteristics of the structure along two orthogonal axes. The DSRR behaves as a dipole resonator that couples with the electric component along one axes and behaves as an LC resonance circuit that couples with the other electric component. Thus, almost an equal magnitude and a 180 phase difference can be generated between the two orthogonal electric components of the reflected waves. The polarization states of the reflected waves will be rotated by 90, when incident waves are polarized by 45 with respect to the symmetric axis of the rotator, and it will be retained when the incident waves are circularly polarized. Simulation results show that this device can work with the relative bandwidth of 90% from 5.5 to 14.5 GHz, of which the polarization conversion ratio is larger than 90%. The polarization conversion ratio will decrease as the incident angle increases, but this high polarization conversion ratio can be obtained at several frequencies. A 576-cell (2424) prototype of the polarization rotator has been fabricated using a printed circuit board method on the FR4 substrates and the experimental results agree well with that of the simulation. The polarization rotator has a simple geometry but more operating frequency bands, compared with the previous designs. It provides a route to broadband polarization rotation and has application values in polarization control, design of new antenna and stealth technology.
      通信作者: 曹祥玉, xiangyucaokdy@163.com
    • 基金项目: 国家自然科学基金(批准号: 61271100, 61471389, 61501494)资助的课题.
      Corresponding author: Cao Xiang-Yu, xiangyucaokdy@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389, 61501494).
    [1]

    Li S J, Gao J, Cao X Y, Zhang Z, Zhang D 2014 IEEE Antennas Wireless Propaga. Lett. 13 1413

    [2]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang H H 2014 Microw. Opt. Technol. Lett. 56 27

    [3]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494

    [4]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [5]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [7]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]

    [9]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [10]

    Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425

    [11]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116

    [12]

    Gansel J K, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 18

    [13]

    Ye Y Q, He S L 2010 Appl. Phys. Lett. 96 203501

    [14]

    Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129

    [15]

    Rajkumar R, Yogesh N, Subramanian V 2013 J. Appl. Phys. 114 224506

    [16]

    Shi H Y, Zhang A X, Zheng S, Li J X, Jiang Y S 2014 Appl. Phys. Lett. 104 034102

    [17]

    Zhu W R, Rukhlenko I D, Xiao F J, Premaratne M 2014 J. Appl. Phys. 115 143101

    [18]

    Zhao J X, Xiao B X, Huang X J, Yang H L 2015 Microw. Opt. Technol. Lett. 57 978

    [19]

    Euler M, Fusco V, Dickie R, Cahill R, Verheggen J 2011 IEEE Trans. Antennas Propag. 59 3103

    [20]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [21]

    Shao J, Li J, Wang Y H, Li J Q, Chen Q, Dong Z G 2014 J. Appl. Phys. 115 243503

    [22]

    Huang X J, Yang D, Yang H L 2014 J. Appl. Phys. 115 103505

    [23]

    Wu L, Yang Z Y, Cheng Y Z, Gong R Z, Zhao M, Zheng Y, Duan J A, Yuan X H 2014 Appl. Phys. A 116 643

    [24]

    Cheng H, Chen S Q, Yu P, Li J X, Xie B Y, Li Z C, Tian J G 2013 Appl. Phys. Lett. 103 223102

    [25]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [26]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J 2013 J. Appl. Phys. 114 074508

    [27]

    Wen X, Zheng J 2014 Opt. Express 22 28292

    [28]

    Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y, Zhang H 2014 Opt. Express 22 29143

    [29]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Opt. Express 22 20973

    [30]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbottetc D 2014 Appl. Phys. Lett. 105 181111

    [31]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [32]

    Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C, Zhou L 2007 Phys. Rev. Lett. 99 063908

  • [1]

    Li S J, Gao J, Cao X Y, Zhang Z, Zhang D 2014 IEEE Antennas Wireless Propaga. Lett. 13 1413

    [2]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang H H 2014 Microw. Opt. Technol. Lett. 56 27

    [3]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494

    [4]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [5]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [7]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]

    [9]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [10]

    Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425

    [11]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116

    [12]

    Gansel J K, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 18

    [13]

    Ye Y Q, He S L 2010 Appl. Phys. Lett. 96 203501

    [14]

    Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129

    [15]

    Rajkumar R, Yogesh N, Subramanian V 2013 J. Appl. Phys. 114 224506

    [16]

    Shi H Y, Zhang A X, Zheng S, Li J X, Jiang Y S 2014 Appl. Phys. Lett. 104 034102

    [17]

    Zhu W R, Rukhlenko I D, Xiao F J, Premaratne M 2014 J. Appl. Phys. 115 143101

    [18]

    Zhao J X, Xiao B X, Huang X J, Yang H L 2015 Microw. Opt. Technol. Lett. 57 978

    [19]

    Euler M, Fusco V, Dickie R, Cahill R, Verheggen J 2011 IEEE Trans. Antennas Propag. 59 3103

    [20]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [21]

    Shao J, Li J, Wang Y H, Li J Q, Chen Q, Dong Z G 2014 J. Appl. Phys. 115 243503

    [22]

    Huang X J, Yang D, Yang H L 2014 J. Appl. Phys. 115 103505

    [23]

    Wu L, Yang Z Y, Cheng Y Z, Gong R Z, Zhao M, Zheng Y, Duan J A, Yuan X H 2014 Appl. Phys. A 116 643

    [24]

    Cheng H, Chen S Q, Yu P, Li J X, Xie B Y, Li Z C, Tian J G 2013 Appl. Phys. Lett. 103 223102

    [25]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [26]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J 2013 J. Appl. Phys. 114 074508

    [27]

    Wen X, Zheng J 2014 Opt. Express 22 28292

    [28]

    Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y, Zhang H 2014 Opt. Express 22 29143

    [29]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Opt. Express 22 20973

    [30]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbottetc D 2014 Appl. Phys. Lett. 105 181111

    [31]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [32]

    Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C, Zhou L 2007 Phys. Rev. Lett. 99 063908

  • [1] 钱黎明, 孙梦然, 郑改革. α相三氧化钼中各向异性双曲声子极化激元的耦合性质. 物理学报, 2023, 72(7): 077101. doi: 10.7498/aps.72.20222144
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [4] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [5] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [6] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [7] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究. 物理学报, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [8] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [9] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [12] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [13] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [14] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [15] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [16] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [17] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [18] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [19] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [20] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性. 物理学报, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
计量
  • 文章访问数:  6221
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-31
  • 修回日期:  2015-11-03
  • 刊出日期:  2016-02-05

/

返回文章
返回